Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem8N Structured version   Visualization version   GIF version

Theorem pexmidlem8N 39944
Description: Lemma for pexmidN 39936. The contradiction of pexmidlem6N 39942 and pexmidlem7N 39943 shows that there can be no atom 𝑝 that is not in 𝑋 + ( 𝑋), which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a 𝐴 = (Atoms‘𝐾)
pexmidALT.p + = (+𝑃𝐾)
pexmidALT.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pexmidlem8N (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)

Proof of Theorem pexmidlem8N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 nonconne 2937 . 2 ¬ (𝑋 = 𝑋𝑋𝑋)
2 simpll 766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → 𝐾 ∈ HL)
3 simplr 768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → 𝑋𝐴)
4 pexmidALT.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 pexmidALT.o . . . . . . 7 = (⊥𝑃𝐾)
64, 5polssatN 39875 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
76adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → ( 𝑋) ⊆ 𝐴)
8 pexmidALT.p . . . . . 6 + = (+𝑃𝐾)
94, 8paddssat 39781 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑋) ⊆ 𝐴) → (𝑋 + ( 𝑋)) ⊆ 𝐴)
102, 3, 7, 9syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) ⊆ 𝐴)
11 df-pss 3931 . . . . . . 7 ((𝑋 + ( 𝑋)) ⊊ 𝐴 ↔ ((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴))
12 pssnel 4430 . . . . . . 7 ((𝑋 + ( 𝑋)) ⊊ 𝐴 → ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
1311, 12sylbir 235 . . . . . 6 (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
14 df-rex 3054 . . . . . 6 (∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)) ↔ ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
1513, 14sylibr 234 . . . . 5 (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → ∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))
16 simplll 774 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝐾 ∈ HL)
17 simpllr 775 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋𝐴)
18 simprl 770 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑝𝐴)
19 simplrl 776 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ( ‘( 𝑋)) = 𝑋)
20 simplrr 777 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋 ≠ ∅)
21 simprr 772 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))
22 eqid 2729 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
23 eqid 2729 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
24 eqid 2729 . . . . . . . . . 10 (𝑋 + {𝑝}) = (𝑋 + {𝑝})
2522, 23, 4, 8, 5, 24pexmidlem6N 39942 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 + {𝑝}) = 𝑋)
2622, 23, 4, 8, 5, 24pexmidlem7N 39943 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 + {𝑝}) ≠ 𝑋)
2725, 26jca 511 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋))
2816, 17, 18, 19, 20, 21, 27syl33anc 1387 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋))
29 nonconne 2937 . . . . . . . 8 ¬ ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋)
3029, 12false 375 . . . . . . 7 (((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋) ↔ (𝑋 = 𝑋𝑋𝑋))
3128, 30sylib 218 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 = 𝑋𝑋𝑋))
3231rexlimdvaa 3135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)) → (𝑋 = 𝑋𝑋𝑋)))
3315, 32syl5 34 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → (𝑋 = 𝑋𝑋𝑋)))
3410, 33mpand 695 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → ((𝑋 + ( 𝑋)) ≠ 𝐴 → (𝑋 = 𝑋𝑋𝑋)))
3534necon1bd 2943 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (¬ (𝑋 = 𝑋𝑋𝑋) → (𝑋 + ( 𝑋)) = 𝐴))
361, 35mpi 20 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  wss 3911  wpss 3912  c0 4292  {csn 4585  cfv 6499  (class class class)co 7369  lecple 17203  joincjn 18248  Atomscatm 39229  HLchlt 39316  +𝑃cpadd 39762  𝑃cpolN 39869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-polarityN 39870  df-psubclN 39902
This theorem is referenced by:  pexmidALTN  39945
  Copyright terms: Public domain W3C validator