Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem8N Structured version   Visualization version   GIF version

Theorem pexmidlem8N 37128
Description: Lemma for pexmidN 37120. The contradiction of pexmidlem6N 37126 and pexmidlem7N 37127 shows that there can be no atom 𝑝 that is not in 𝑋 + ( 𝑋), which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a 𝐴 = (Atoms‘𝐾)
pexmidALT.p + = (+𝑃𝐾)
pexmidALT.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pexmidlem8N (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)

Proof of Theorem pexmidlem8N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 nonconne 3028 . 2 ¬ (𝑋 = 𝑋𝑋𝑋)
2 simpll 765 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → 𝐾 ∈ HL)
3 simplr 767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → 𝑋𝐴)
4 pexmidALT.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 pexmidALT.o . . . . . . 7 = (⊥𝑃𝐾)
64, 5polssatN 37059 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
76adantr 483 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → ( 𝑋) ⊆ 𝐴)
8 pexmidALT.p . . . . . 6 + = (+𝑃𝐾)
94, 8paddssat 36965 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑋) ⊆ 𝐴) → (𝑋 + ( 𝑋)) ⊆ 𝐴)
102, 3, 7, 9syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) ⊆ 𝐴)
11 df-pss 3954 . . . . . . 7 ((𝑋 + ( 𝑋)) ⊊ 𝐴 ↔ ((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴))
12 pssnel 4420 . . . . . . 7 ((𝑋 + ( 𝑋)) ⊊ 𝐴 → ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
1311, 12sylbir 237 . . . . . 6 (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
14 df-rex 3144 . . . . . 6 (∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)) ↔ ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
1513, 14sylibr 236 . . . . 5 (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → ∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))
16 simplll 773 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝐾 ∈ HL)
17 simpllr 774 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋𝐴)
18 simprl 769 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑝𝐴)
19 simplrl 775 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ( ‘( 𝑋)) = 𝑋)
20 simplrr 776 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋 ≠ ∅)
21 simprr 771 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))
22 eqid 2821 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
23 eqid 2821 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
24 eqid 2821 . . . . . . . . . 10 (𝑋 + {𝑝}) = (𝑋 + {𝑝})
2522, 23, 4, 8, 5, 24pexmidlem6N 37126 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 + {𝑝}) = 𝑋)
2622, 23, 4, 8, 5, 24pexmidlem7N 37127 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 + {𝑝}) ≠ 𝑋)
2725, 26jca 514 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋))
2816, 17, 18, 19, 20, 21, 27syl33anc 1381 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋))
29 nonconne 3028 . . . . . . . 8 ¬ ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋)
3029, 12false 378 . . . . . . 7 (((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋) ↔ (𝑋 = 𝑋𝑋𝑋))
3128, 30sylib 220 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 = 𝑋𝑋𝑋))
3231rexlimdvaa 3285 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)) → (𝑋 = 𝑋𝑋𝑋)))
3315, 32syl5 34 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → (𝑋 = 𝑋𝑋𝑋)))
3410, 33mpand 693 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → ((𝑋 + ( 𝑋)) ≠ 𝐴 → (𝑋 = 𝑋𝑋𝑋)))
3534necon1bd 3034 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (¬ (𝑋 = 𝑋𝑋𝑋) → (𝑋 + ( 𝑋)) = 𝐴))
361, 35mpi 20 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3016  wrex 3139  wss 3936  wpss 3937  c0 4291  {csn 4567  cfv 6355  (class class class)co 7156  lecple 16572  joincjn 17554  Atomscatm 36414  HLchlt 36501  +𝑃cpadd 36946  𝑃cpolN 37053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-riotaBAD 36104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-undef 7939  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-polarityN 37054  df-psubclN 37086
This theorem is referenced by:  pexmidALTN  37129
  Copyright terms: Public domain W3C validator