Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem8N Structured version   Visualization version   GIF version

Theorem pexmidlem8N 39979
Description: Lemma for pexmidN 39971. The contradiction of pexmidlem6N 39977 and pexmidlem7N 39978 shows that there can be no atom 𝑝 that is not in 𝑋 + ( 𝑋), which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a 𝐴 = (Atoms‘𝐾)
pexmidALT.p + = (+𝑃𝐾)
pexmidALT.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pexmidlem8N (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)

Proof of Theorem pexmidlem8N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 nonconne 2952 . 2 ¬ (𝑋 = 𝑋𝑋𝑋)
2 simpll 767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → 𝐾 ∈ HL)
3 simplr 769 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → 𝑋𝐴)
4 pexmidALT.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 pexmidALT.o . . . . . . 7 = (⊥𝑃𝐾)
64, 5polssatN 39910 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
76adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → ( 𝑋) ⊆ 𝐴)
8 pexmidALT.p . . . . . 6 + = (+𝑃𝐾)
94, 8paddssat 39816 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑋) ⊆ 𝐴) → (𝑋 + ( 𝑋)) ⊆ 𝐴)
102, 3, 7, 9syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) ⊆ 𝐴)
11 df-pss 3971 . . . . . . 7 ((𝑋 + ( 𝑋)) ⊊ 𝐴 ↔ ((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴))
12 pssnel 4471 . . . . . . 7 ((𝑋 + ( 𝑋)) ⊊ 𝐴 → ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
1311, 12sylbir 235 . . . . . 6 (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
14 df-rex 3071 . . . . . 6 (∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)) ↔ ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
1513, 14sylibr 234 . . . . 5 (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → ∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))
16 simplll 775 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝐾 ∈ HL)
17 simpllr 776 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋𝐴)
18 simprl 771 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑝𝐴)
19 simplrl 777 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ( ‘( 𝑋)) = 𝑋)
20 simplrr 778 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋 ≠ ∅)
21 simprr 773 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))
22 eqid 2737 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
23 eqid 2737 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
24 eqid 2737 . . . . . . . . . 10 (𝑋 + {𝑝}) = (𝑋 + {𝑝})
2522, 23, 4, 8, 5, 24pexmidlem6N 39977 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 + {𝑝}) = 𝑋)
2622, 23, 4, 8, 5, 24pexmidlem7N 39978 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 + {𝑝}) ≠ 𝑋)
2725, 26jca 511 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋))
2816, 17, 18, 19, 20, 21, 27syl33anc 1387 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋))
29 nonconne 2952 . . . . . . . 8 ¬ ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋)
3029, 12false 375 . . . . . . 7 (((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋) ↔ (𝑋 = 𝑋𝑋𝑋))
3128, 30sylib 218 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 = 𝑋𝑋𝑋))
3231rexlimdvaa 3156 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)) → (𝑋 = 𝑋𝑋𝑋)))
3315, 32syl5 34 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → (𝑋 = 𝑋𝑋𝑋)))
3410, 33mpand 695 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → ((𝑋 + ( 𝑋)) ≠ 𝐴 → (𝑋 = 𝑋𝑋𝑋)))
3534necon1bd 2958 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (¬ (𝑋 = 𝑋𝑋𝑋) → (𝑋 + ( 𝑋)) = 𝐴))
361, 35mpi 20 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wrex 3070  wss 3951  wpss 3952  c0 4333  {csn 4626  cfv 6561  (class class class)co 7431  lecple 17304  joincjn 18357  Atomscatm 39264  HLchlt 39351  +𝑃cpadd 39797  𝑃cpolN 39904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-polarityN 39905  df-psubclN 39937
This theorem is referenced by:  pexmidALTN  39980
  Copyright terms: Public domain W3C validator