Step | Hyp | Ref
| Expression |
1 | | nonconne 2955 |
. 2
⊢ ¬
(𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋) |
2 | | simpll 764 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → 𝐾 ∈ HL) |
3 | | simplr 766 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → 𝑋 ⊆ 𝐴) |
4 | | pexmidALT.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | pexmidALT.o |
. . . . . . 7
⊢ ⊥ =
(⊥𝑃‘𝐾) |
6 | 4, 5 | polssatN 37922 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
7 | 6 | adantr 481 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
8 | | pexmidALT.p |
. . . . . 6
⊢ + =
(+𝑃‘𝐾) |
9 | 4, 8 | paddssat 37828 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) → (𝑋 + ( ⊥ ‘𝑋)) ⊆ 𝐴) |
10 | 2, 3, 7, 9 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (𝑋 + ( ⊥ ‘𝑋)) ⊆ 𝐴) |
11 | | df-pss 3906 |
. . . . . . 7
⊢ ((𝑋 + ( ⊥ ‘𝑋)) ⊊ 𝐴 ↔ ((𝑋 + ( ⊥ ‘𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( ⊥ ‘𝑋)) ≠ 𝐴)) |
12 | | pssnel 4404 |
. . . . . . 7
⊢ ((𝑋 + ( ⊥ ‘𝑋)) ⊊ 𝐴 → ∃𝑝(𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
13 | 11, 12 | sylbir 234 |
. . . . . 6
⊢ (((𝑋 + ( ⊥ ‘𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( ⊥ ‘𝑋)) ≠ 𝐴) → ∃𝑝(𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
14 | | df-rex 3070 |
. . . . . 6
⊢
(∃𝑝 ∈
𝐴 ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)) ↔ ∃𝑝(𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
15 | 13, 14 | sylibr 233 |
. . . . 5
⊢ (((𝑋 + ( ⊥ ‘𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( ⊥ ‘𝑋)) ≠ 𝐴) → ∃𝑝 ∈ 𝐴 ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
16 | | simplll 772 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝐾 ∈ HL) |
17 | | simpllr 773 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑋 ⊆ 𝐴) |
18 | | simprl 768 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑝 ∈ 𝐴) |
19 | | simplrl 774 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) |
20 | | simplrr 775 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑋 ≠ ∅) |
21 | | simprr 770 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
22 | | eqid 2738 |
. . . . . . . . . 10
⊢
(le‘𝐾) =
(le‘𝐾) |
23 | | eqid 2738 |
. . . . . . . . . 10
⊢
(join‘𝐾) =
(join‘𝐾) |
24 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑋 + {𝑝}) = (𝑋 + {𝑝}) |
25 | 22, 23, 4, 8, 5, 24 | pexmidlem6N 37989 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (𝑋 + {𝑝}) = 𝑋) |
26 | 22, 23, 4, 8, 5, 24 | pexmidlem7N 37990 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (𝑋 + {𝑝}) ≠ 𝑋) |
27 | 25, 26 | jca 512 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋)) |
28 | 16, 17, 18, 19, 20, 21, 27 | syl33anc 1384 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋)) |
29 | | nonconne 2955 |
. . . . . . . 8
⊢ ¬
((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋) |
30 | 29, 1 | 2false 376 |
. . . . . . 7
⊢ (((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋) ↔ (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋)) |
31 | 28, 30 | sylib 217 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋)) |
32 | 31 | rexlimdvaa 3214 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (∃𝑝 ∈ 𝐴 ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
33 | 15, 32 | syl5 34 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (((𝑋 + ( ⊥ ‘𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( ⊥ ‘𝑋)) ≠ 𝐴) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
34 | 10, 33 | mpand 692 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → ((𝑋 + ( ⊥ ‘𝑋)) ≠ 𝐴 → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
35 | 34 | necon1bd 2961 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (¬ (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴)) |
36 | 1, 35 | mpi 20 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |