Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem8N Structured version   Visualization version   GIF version

Theorem pexmidlem8N 39454
Description: Lemma for pexmidN 39446. The contradiction of pexmidlem6N 39452 and pexmidlem7N 39453 shows that there can be no atom 𝑝 that is not in 𝑋 + ( 𝑋), which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a 𝐴 = (Atoms‘𝐾)
pexmidALT.p + = (+𝑃𝐾)
pexmidALT.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pexmidlem8N (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)

Proof of Theorem pexmidlem8N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 nonconne 2948 . 2 ¬ (𝑋 = 𝑋𝑋𝑋)
2 simpll 765 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → 𝐾 ∈ HL)
3 simplr 767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → 𝑋𝐴)
4 pexmidALT.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 pexmidALT.o . . . . . . 7 = (⊥𝑃𝐾)
64, 5polssatN 39385 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
76adantr 479 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → ( 𝑋) ⊆ 𝐴)
8 pexmidALT.p . . . . . 6 + = (+𝑃𝐾)
94, 8paddssat 39291 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑋) ⊆ 𝐴) → (𝑋 + ( 𝑋)) ⊆ 𝐴)
102, 3, 7, 9syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) ⊆ 𝐴)
11 df-pss 3966 . . . . . . 7 ((𝑋 + ( 𝑋)) ⊊ 𝐴 ↔ ((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴))
12 pssnel 4472 . . . . . . 7 ((𝑋 + ( 𝑋)) ⊊ 𝐴 → ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
1311, 12sylbir 234 . . . . . 6 (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
14 df-rex 3067 . . . . . 6 (∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)) ↔ ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
1513, 14sylibr 233 . . . . 5 (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → ∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))
16 simplll 773 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝐾 ∈ HL)
17 simpllr 774 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋𝐴)
18 simprl 769 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑝𝐴)
19 simplrl 775 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ( ‘( 𝑋)) = 𝑋)
20 simplrr 776 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋 ≠ ∅)
21 simprr 771 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))
22 eqid 2727 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
23 eqid 2727 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
24 eqid 2727 . . . . . . . . . 10 (𝑋 + {𝑝}) = (𝑋 + {𝑝})
2522, 23, 4, 8, 5, 24pexmidlem6N 39452 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 + {𝑝}) = 𝑋)
2622, 23, 4, 8, 5, 24pexmidlem7N 39453 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 + {𝑝}) ≠ 𝑋)
2725, 26jca 510 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋))
2816, 17, 18, 19, 20, 21, 27syl33anc 1382 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋))
29 nonconne 2948 . . . . . . . 8 ¬ ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋)
3029, 12false 374 . . . . . . 7 (((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋) ↔ (𝑋 = 𝑋𝑋𝑋))
3128, 30sylib 217 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 = 𝑋𝑋𝑋))
3231rexlimdvaa 3152 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)) → (𝑋 = 𝑋𝑋𝑋)))
3315, 32syl5 34 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → (𝑋 = 𝑋𝑋𝑋)))
3410, 33mpand 693 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → ((𝑋 + ( 𝑋)) ≠ 𝐴 → (𝑋 = 𝑋𝑋𝑋)))
3534necon1bd 2954 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (¬ (𝑋 = 𝑋𝑋𝑋) → (𝑋 + ( 𝑋)) = 𝐴))
361, 35mpi 20 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wne 2936  wrex 3066  wss 3947  wpss 3948  c0 4324  {csn 4630  cfv 6551  (class class class)co 7424  lecple 17245  joincjn 18308  Atomscatm 38739  HLchlt 38826  +𝑃cpadd 39272  𝑃cpolN 39379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 7997  df-2nd 7998  df-proset 18292  df-poset 18310  df-plt 18327  df-lub 18343  df-glb 18344  df-join 18345  df-meet 18346  df-p0 18422  df-p1 18423  df-lat 18429  df-clat 18496  df-oposet 38652  df-ol 38654  df-oml 38655  df-covers 38742  df-ats 38743  df-atl 38774  df-cvlat 38798  df-hlat 38827  df-psubsp 38980  df-pmap 38981  df-padd 39273  df-polarityN 39380  df-psubclN 39412
This theorem is referenced by:  pexmidALTN  39455
  Copyright terms: Public domain W3C validator