Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem8N Structured version   Visualization version   GIF version

Theorem pexmidlem8N 38848
Description: Lemma for pexmidN 38840. The contradiction of pexmidlem6N 38846 and pexmidlem7N 38847 shows that there can be no atom 𝑝 that is not in 𝑋 + ( βŠ₯ β€˜π‘‹), which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a 𝐴 = (Atomsβ€˜πΎ)
pexmidALT.p + = (+π‘ƒβ€˜πΎ)
pexmidALT.o βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
pexmidlem8N (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) = 𝐴)

Proof of Theorem pexmidlem8N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 nonconne 2953 . 2 Β¬ (𝑋 = 𝑋 ∧ 𝑋 β‰  𝑋)
2 simpll 766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) β†’ 𝐾 ∈ HL)
3 simplr 768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) β†’ 𝑋 βŠ† 𝐴)
4 pexmidALT.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
5 pexmidALT.o . . . . . . 7 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
64, 5polssatN 38779 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) β†’ ( βŠ₯ β€˜π‘‹) βŠ† 𝐴)
76adantr 482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) β†’ ( βŠ₯ β€˜π‘‹) βŠ† 𝐴)
8 pexmidALT.p . . . . . 6 + = (+π‘ƒβ€˜πΎ)
94, 8paddssat 38685 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ ( βŠ₯ β€˜π‘‹) βŠ† 𝐴) β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) βŠ† 𝐴)
102, 3, 7, 9syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) βŠ† 𝐴)
11 df-pss 3968 . . . . . . 7 ((𝑋 + ( βŠ₯ β€˜π‘‹)) ⊊ 𝐴 ↔ ((𝑋 + ( βŠ₯ β€˜π‘‹)) βŠ† 𝐴 ∧ (𝑋 + ( βŠ₯ β€˜π‘‹)) β‰  𝐴))
12 pssnel 4471 . . . . . . 7 ((𝑋 + ( βŠ₯ β€˜π‘‹)) ⊊ 𝐴 β†’ βˆƒπ‘(𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹))))
1311, 12sylbir 234 . . . . . 6 (((𝑋 + ( βŠ₯ β€˜π‘‹)) βŠ† 𝐴 ∧ (𝑋 + ( βŠ₯ β€˜π‘‹)) β‰  𝐴) β†’ βˆƒπ‘(𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹))))
14 df-rex 3072 . . . . . 6 (βˆƒπ‘ ∈ 𝐴 Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)) ↔ βˆƒπ‘(𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹))))
1513, 14sylibr 233 . . . . 5 (((𝑋 + ( βŠ₯ β€˜π‘‹)) βŠ† 𝐴 ∧ (𝑋 + ( βŠ₯ β€˜π‘‹)) β‰  𝐴) β†’ βˆƒπ‘ ∈ 𝐴 Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))
16 simplll 774 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ 𝐾 ∈ HL)
17 simpllr 775 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ 𝑋 βŠ† 𝐴)
18 simprl 770 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ 𝑝 ∈ 𝐴)
19 simplrl 776 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋)
20 simplrr 777 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ 𝑋 β‰  βˆ…)
21 simprr 772 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))
22 eqid 2733 . . . . . . . . . 10 (leβ€˜πΎ) = (leβ€˜πΎ)
23 eqid 2733 . . . . . . . . . 10 (joinβ€˜πΎ) = (joinβ€˜πΎ)
24 eqid 2733 . . . . . . . . . 10 (𝑋 + {𝑝}) = (𝑋 + {𝑝})
2522, 23, 4, 8, 5, 24pexmidlem6N 38846 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ… ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ (𝑋 + {𝑝}) = 𝑋)
2622, 23, 4, 8, 5, 24pexmidlem7N 38847 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ… ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ (𝑋 + {𝑝}) β‰  𝑋)
2725, 26jca 513 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ… ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) β‰  𝑋))
2816, 17, 18, 19, 20, 21, 27syl33anc 1386 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) β‰  𝑋))
29 nonconne 2953 . . . . . . . 8 Β¬ ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) β‰  𝑋)
3029, 12false 376 . . . . . . 7 (((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) β‰  𝑋) ↔ (𝑋 = 𝑋 ∧ 𝑋 β‰  𝑋))
3128, 30sylib 217 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)))) β†’ (𝑋 = 𝑋 ∧ 𝑋 β‰  𝑋))
3231rexlimdvaa 3157 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) β†’ (βˆƒπ‘ ∈ 𝐴 Β¬ 𝑝 ∈ (𝑋 + ( βŠ₯ β€˜π‘‹)) β†’ (𝑋 = 𝑋 ∧ 𝑋 β‰  𝑋)))
3315, 32syl5 34 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) β†’ (((𝑋 + ( βŠ₯ β€˜π‘‹)) βŠ† 𝐴 ∧ (𝑋 + ( βŠ₯ β€˜π‘‹)) β‰  𝐴) β†’ (𝑋 = 𝑋 ∧ 𝑋 β‰  𝑋)))
3410, 33mpand 694 . . 3 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) β†’ ((𝑋 + ( βŠ₯ β€˜π‘‹)) β‰  𝐴 β†’ (𝑋 = 𝑋 ∧ 𝑋 β‰  𝑋)))
3534necon1bd 2959 . 2 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) β†’ (Β¬ (𝑋 = 𝑋 ∧ 𝑋 β‰  𝑋) β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) = 𝐴))
361, 35mpi 20 1 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴) ∧ (( βŠ₯ β€˜( βŠ₯ β€˜π‘‹)) = 𝑋 ∧ 𝑋 β‰  βˆ…)) β†’ (𝑋 + ( βŠ₯ β€˜π‘‹)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107   β‰  wne 2941  βˆƒwrex 3071   βŠ† wss 3949   ⊊ wpss 3950  βˆ…c0 4323  {csn 4629  β€˜cfv 6544  (class class class)co 7409  lecple 17204  joincjn 18264  Atomscatm 38133  HLchlt 38220  +𝑃cpadd 38666  βŠ₯𝑃cpolN 38773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-p1 18379  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-psubsp 38374  df-pmap 38375  df-padd 38667  df-polarityN 38774  df-psubclN 38806
This theorem is referenced by:  pexmidALTN  38849
  Copyright terms: Public domain W3C validator