Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem8N Structured version   Visualization version   GIF version

Theorem pexmidlem8N 39978
Description: Lemma for pexmidN 39970. The contradiction of pexmidlem6N 39976 and pexmidlem7N 39977 shows that there can be no atom 𝑝 that is not in 𝑋 + ( 𝑋), which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a 𝐴 = (Atoms‘𝐾)
pexmidALT.p + = (+𝑃𝐾)
pexmidALT.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pexmidlem8N (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)

Proof of Theorem pexmidlem8N
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 nonconne 2938 . 2 ¬ (𝑋 = 𝑋𝑋𝑋)
2 simpll 766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → 𝐾 ∈ HL)
3 simplr 768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → 𝑋𝐴)
4 pexmidALT.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 pexmidALT.o . . . . . . 7 = (⊥𝑃𝐾)
64, 5polssatN 39909 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
76adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → ( 𝑋) ⊆ 𝐴)
8 pexmidALT.p . . . . . 6 + = (+𝑃𝐾)
94, 8paddssat 39815 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑋) ⊆ 𝐴) → (𝑋 + ( 𝑋)) ⊆ 𝐴)
102, 3, 7, 9syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) ⊆ 𝐴)
11 df-pss 3937 . . . . . . 7 ((𝑋 + ( 𝑋)) ⊊ 𝐴 ↔ ((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴))
12 pssnel 4437 . . . . . . 7 ((𝑋 + ( 𝑋)) ⊊ 𝐴 → ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
1311, 12sylbir 235 . . . . . 6 (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
14 df-rex 3055 . . . . . 6 (∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)) ↔ ∃𝑝(𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋))))
1513, 14sylibr 234 . . . . 5 (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → ∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))
16 simplll 774 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝐾 ∈ HL)
17 simpllr 775 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋𝐴)
18 simprl 770 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑝𝐴)
19 simplrl 776 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ( ‘( 𝑋)) = 𝑋)
20 simplrr 777 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → 𝑋 ≠ ∅)
21 simprr 772 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))
22 eqid 2730 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
23 eqid 2730 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
24 eqid 2730 . . . . . . . . . 10 (𝑋 + {𝑝}) = (𝑋 + {𝑝})
2522, 23, 4, 8, 5, 24pexmidlem6N 39976 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 + {𝑝}) = 𝑋)
2622, 23, 4, 8, 5, 24pexmidlem7N 39977 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 + {𝑝}) ≠ 𝑋)
2725, 26jca 511 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋))
2816, 17, 18, 19, 20, 21, 27syl33anc 1387 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋))
29 nonconne 2938 . . . . . . . 8 ¬ ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋)
3029, 12false 375 . . . . . . 7 (((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋) ↔ (𝑋 = 𝑋𝑋𝑋))
3128, 30sylib 218 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) ∧ (𝑝𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( 𝑋)))) → (𝑋 = 𝑋𝑋𝑋))
3231rexlimdvaa 3136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (∃𝑝𝐴 ¬ 𝑝 ∈ (𝑋 + ( 𝑋)) → (𝑋 = 𝑋𝑋𝑋)))
3315, 32syl5 34 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (((𝑋 + ( 𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( 𝑋)) ≠ 𝐴) → (𝑋 = 𝑋𝑋𝑋)))
3410, 33mpand 695 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → ((𝑋 + ( 𝑋)) ≠ 𝐴 → (𝑋 = 𝑋𝑋𝑋)))
3534necon1bd 2944 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (¬ (𝑋 = 𝑋𝑋𝑋) → (𝑋 + ( 𝑋)) = 𝐴))
361, 35mpi 20 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ (( ‘( 𝑋)) = 𝑋𝑋 ≠ ∅)) → (𝑋 + ( 𝑋)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  wss 3917  wpss 3918  c0 4299  {csn 4592  cfv 6514  (class class class)co 7390  lecple 17234  joincjn 18279  Atomscatm 39263  HLchlt 39350  +𝑃cpadd 39796  𝑃cpolN 39903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-polarityN 39904  df-psubclN 39936
This theorem is referenced by:  pexmidALTN  39979
  Copyright terms: Public domain W3C validator