| Step | Hyp | Ref
| Expression |
| 1 | | nonconne 2952 |
. 2
⊢ ¬
(𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋) |
| 2 | | simpll 767 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → 𝐾 ∈ HL) |
| 3 | | simplr 769 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → 𝑋 ⊆ 𝐴) |
| 4 | | pexmidALT.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 5 | | pexmidALT.o |
. . . . . . 7
⊢ ⊥ =
(⊥𝑃‘𝐾) |
| 6 | 4, 5 | polssatN 39910 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → ( ⊥ ‘𝑋) ⊆ 𝐴) |
| 8 | | pexmidALT.p |
. . . . . 6
⊢ + =
(+𝑃‘𝐾) |
| 9 | 4, 8 | paddssat 39816 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) → (𝑋 + ( ⊥ ‘𝑋)) ⊆ 𝐴) |
| 10 | 2, 3, 7, 9 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (𝑋 + ( ⊥ ‘𝑋)) ⊆ 𝐴) |
| 11 | | df-pss 3971 |
. . . . . . 7
⊢ ((𝑋 + ( ⊥ ‘𝑋)) ⊊ 𝐴 ↔ ((𝑋 + ( ⊥ ‘𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( ⊥ ‘𝑋)) ≠ 𝐴)) |
| 12 | | pssnel 4471 |
. . . . . . 7
⊢ ((𝑋 + ( ⊥ ‘𝑋)) ⊊ 𝐴 → ∃𝑝(𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
| 13 | 11, 12 | sylbir 235 |
. . . . . 6
⊢ (((𝑋 + ( ⊥ ‘𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( ⊥ ‘𝑋)) ≠ 𝐴) → ∃𝑝(𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
| 14 | | df-rex 3071 |
. . . . . 6
⊢
(∃𝑝 ∈
𝐴 ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)) ↔ ∃𝑝(𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
| 15 | 13, 14 | sylibr 234 |
. . . . 5
⊢ (((𝑋 + ( ⊥ ‘𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( ⊥ ‘𝑋)) ≠ 𝐴) → ∃𝑝 ∈ 𝐴 ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
| 16 | | simplll 775 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝐾 ∈ HL) |
| 17 | | simpllr 776 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑋 ⊆ 𝐴) |
| 18 | | simprl 771 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑝 ∈ 𝐴) |
| 19 | | simplrl 777 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) |
| 20 | | simplrr 778 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → 𝑋 ≠ ∅) |
| 21 | | simprr 773 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
| 22 | | eqid 2737 |
. . . . . . . . . 10
⊢
(le‘𝐾) =
(le‘𝐾) |
| 23 | | eqid 2737 |
. . . . . . . . . 10
⊢
(join‘𝐾) =
(join‘𝐾) |
| 24 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑋 + {𝑝}) = (𝑋 + {𝑝}) |
| 25 | 22, 23, 4, 8, 5, 24 | pexmidlem6N 39977 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (𝑋 + {𝑝}) = 𝑋) |
| 26 | 22, 23, 4, 8, 5, 24 | pexmidlem7N 39978 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (𝑋 + {𝑝}) ≠ 𝑋) |
| 27 | 25, 26 | jca 511 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅ ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋)) |
| 28 | 16, 17, 18, 19, 20, 21, 27 | syl33anc 1387 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → ((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋)) |
| 29 | | nonconne 2952 |
. . . . . . . 8
⊢ ¬
((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋) |
| 30 | 29, 1 | 2false 375 |
. . . . . . 7
⊢ (((𝑋 + {𝑝}) = 𝑋 ∧ (𝑋 + {𝑝}) ≠ 𝑋) ↔ (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋)) |
| 31 | 28, 30 | sylib 218 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋)) |
| 32 | 31 | rexlimdvaa 3156 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (∃𝑝 ∈ 𝐴 ¬ 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
| 33 | 15, 32 | syl5 34 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (((𝑋 + ( ⊥ ‘𝑋)) ⊆ 𝐴 ∧ (𝑋 + ( ⊥ ‘𝑋)) ≠ 𝐴) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
| 34 | 10, 33 | mpand 695 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → ((𝑋 + ( ⊥ ‘𝑋)) ≠ 𝐴 → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
| 35 | 34 | necon1bd 2958 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (¬ (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴)) |
| 36 | 1, 35 | mpi 20 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ (( ⊥ ‘( ⊥
‘𝑋)) = 𝑋 ∧ 𝑋 ≠ ∅)) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |