| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dochexmidlem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for dochexmid 41513. The contradiction of dochexmidlem6 41510 and dochexmidlem7 41511 shows that there can be no atom 𝑝 that is not in 𝑋 + ( ⊥ ‘𝑋), which is therefore the whole atom space. (Contributed by NM, 15-Jan-2015.) |
| Ref | Expression |
|---|---|
| dochexmidlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dochexmidlem1.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| dochexmidlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dochexmidlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
| dochexmidlem1.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| dochexmidlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| dochexmidlem1.p | ⊢ ⊕ = (LSSum‘𝑈) |
| dochexmidlem1.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
| dochexmidlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dochexmidlem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| dochexmidlem8.z | ⊢ 0 = (0g‘𝑈) |
| dochexmidlem8.xn | ⊢ (𝜑 → 𝑋 ≠ { 0 }) |
| dochexmidlem8.c | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| Ref | Expression |
|---|---|
| dochexmidlem8 | ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nonconne 2940 | . 2 ⊢ ¬ (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋) | |
| 2 | dochexmidlem1.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | dochexmidlem1.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | dochexmidlem1.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 5 | 2, 3, 4 | dvhlmod 41155 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 6 | dochexmidlem1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 7 | dochexmidlem1.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑈) | |
| 8 | dochexmidlem1.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 9 | 7, 8 | lssss 20870 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉) |
| 10 | 6, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
| 11 | dochexmidlem1.o | . . . . . . . 8 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 12 | 2, 3, 7, 8, 11 | dochlss 41399 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ∈ 𝑆) |
| 13 | 4, 10, 12 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘𝑋) ∈ 𝑆) |
| 14 | dochexmidlem1.p | . . . . . . 7 ⊢ ⊕ = (LSSum‘𝑈) | |
| 15 | 8, 14 | lsmcl 21018 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘𝑋) ∈ 𝑆) → (𝑋 ⊕ ( ⊥ ‘𝑋)) ∈ 𝑆) |
| 16 | 5, 6, 13, 15 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) ∈ 𝑆) |
| 17 | 7, 8 | lssss 20870 | . . . . 5 ⊢ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ∈ 𝑆 → (𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉) |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉) |
| 19 | dochexmidlem1.a | . . . . . . 7 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
| 20 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉)) → 𝑈 ∈ LMod) |
| 21 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉)) → (𝑋 ⊕ ( ⊥ ‘𝑋)) ∈ 𝑆) |
| 22 | 7, 8 | lss1 20872 | . . . . . . . . 9 ⊢ (𝑈 ∈ LMod → 𝑉 ∈ 𝑆) |
| 23 | 5, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ 𝑆) |
| 24 | 23 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉)) → 𝑉 ∈ 𝑆) |
| 25 | df-pss 3922 | . . . . . . . . 9 ⊢ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊊ 𝑉 ↔ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉)) | |
| 26 | 25 | biimpri 228 | . . . . . . . 8 ⊢ (((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉) → (𝑋 ⊕ ( ⊥ ‘𝑋)) ⊊ 𝑉) |
| 27 | 26 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉)) → (𝑋 ⊕ ( ⊥ ‘𝑋)) ⊊ 𝑉) |
| 28 | 8, 19, 20, 21, 24, 27 | lpssat 39058 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉)) → ∃𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋)))) |
| 29 | 28 | ex 412 | . . . . 5 ⊢ (𝜑 → (((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉) → ∃𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))))) |
| 30 | dochexmidlem1.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 31 | 4 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 32 | 6 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → 𝑋 ∈ 𝑆) |
| 33 | simp2 1137 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → 𝑝 ∈ 𝐴) | |
| 34 | dochexmidlem8.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑈) | |
| 35 | eqid 2731 | . . . . . . . . 9 ⊢ (𝑋 ⊕ 𝑝) = (𝑋 ⊕ 𝑝) | |
| 36 | dochexmidlem8.xn | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ≠ { 0 }) | |
| 37 | 36 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → 𝑋 ≠ { 0 }) |
| 38 | dochexmidlem8.c | . . . . . . . . . 10 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | |
| 39 | 38 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 40 | simp3 1138 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) | |
| 41 | 2, 11, 3, 7, 8, 30, 14, 19, 31, 32, 33, 34, 35, 37, 39, 40 | dochexmidlem6 41510 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → (𝑋 ⊕ 𝑝) = 𝑋) |
| 42 | 2, 11, 3, 7, 8, 30, 14, 19, 31, 32, 33, 34, 35, 37, 39, 40 | dochexmidlem7 41511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → (𝑋 ⊕ 𝑝) ≠ 𝑋) |
| 43 | 41, 42 | pm2.21ddne 3012 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋)) |
| 44 | 43 | 3adant3l 1181 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋)))) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋)) |
| 45 | 44 | rexlimdv3a 3137 | . . . . 5 ⊢ (𝜑 → (∃𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
| 46 | 29, 45 | syld 47 | . . . 4 ⊢ (𝜑 → (((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
| 47 | 18, 46 | mpand 695 | . . 3 ⊢ (𝜑 → ((𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉 → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
| 48 | 47 | necon1bd 2946 | . 2 ⊢ (𝜑 → (¬ (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋) → (𝑋 ⊕ ( ⊥ ‘𝑋)) = 𝑉)) |
| 49 | 1, 48 | mpi 20 | 1 ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ⊆ wss 3902 ⊊ wpss 3903 {csn 4576 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 0gc0g 17343 LSSumclsm 19547 LModclmod 20794 LSubSpclss 20865 LSpanclspn 20905 LSAtomsclsa 39019 HLchlt 39395 LHypclh 40029 DVecHcdvh 41123 ocHcoch 41392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-riotaBAD 38998 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19230 df-oppg 19259 df-lsm 19549 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 df-dvr 20320 df-drng 20647 df-lmod 20796 df-lss 20866 df-lsp 20906 df-lvec 21038 df-lsatoms 39021 df-lcv 39064 df-oposet 39221 df-ol 39223 df-oml 39224 df-covers 39311 df-ats 39312 df-atl 39343 df-cvlat 39367 df-hlat 39396 df-llines 39543 df-lplanes 39544 df-lvols 39545 df-lines 39546 df-psubsp 39548 df-pmap 39549 df-padd 39841 df-lhyp 40033 df-laut 40034 df-ldil 40149 df-ltrn 40150 df-trl 40204 df-tgrp 40788 df-tendo 40800 df-edring 40802 df-dveca 41048 df-disoa 41074 df-dvech 41124 df-dib 41184 df-dic 41218 df-dih 41274 df-doch 41393 df-djh 41440 |
| This theorem is referenced by: dochexmid 41513 |
| Copyright terms: Public domain | W3C validator |