![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochexmidlem8 | Structured version Visualization version GIF version |
Description: Lemma for dochexmid 40802. The contradiction of dochexmidlem6 40799 and dochexmidlem7 40800 shows that there can be no atom 𝑝 that is not in 𝑋 + ( ⊥ ‘𝑋), which is therefore the whole atom space. (Contributed by NM, 15-Jan-2015.) |
Ref | Expression |
---|---|
dochexmidlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochexmidlem1.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochexmidlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochexmidlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
dochexmidlem1.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
dochexmidlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
dochexmidlem1.p | ⊢ ⊕ = (LSSum‘𝑈) |
dochexmidlem1.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
dochexmidlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochexmidlem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
dochexmidlem8.z | ⊢ 0 = (0g‘𝑈) |
dochexmidlem8.xn | ⊢ (𝜑 → 𝑋 ≠ { 0 }) |
dochexmidlem8.c | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
Ref | Expression |
---|---|
dochexmidlem8 | ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nonconne 2951 | . 2 ⊢ ¬ (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋) | |
2 | dochexmidlem1.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | dochexmidlem1.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | dochexmidlem1.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
5 | 2, 3, 4 | dvhlmod 40444 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
6 | dochexmidlem1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
7 | dochexmidlem1.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑈) | |
8 | dochexmidlem1.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑈) | |
9 | 7, 8 | lssss 20779 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉) |
10 | 6, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
11 | dochexmidlem1.o | . . . . . . . 8 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
12 | 2, 3, 7, 8, 11 | dochlss 40688 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ∈ 𝑆) |
13 | 4, 10, 12 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘𝑋) ∈ 𝑆) |
14 | dochexmidlem1.p | . . . . . . 7 ⊢ ⊕ = (LSSum‘𝑈) | |
15 | 8, 14 | lsmcl 20926 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘𝑋) ∈ 𝑆) → (𝑋 ⊕ ( ⊥ ‘𝑋)) ∈ 𝑆) |
16 | 5, 6, 13, 15 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) ∈ 𝑆) |
17 | 7, 8 | lssss 20779 | . . . . 5 ⊢ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ∈ 𝑆 → (𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉) |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉) |
19 | dochexmidlem1.a | . . . . . . 7 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
20 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉)) → 𝑈 ∈ LMod) |
21 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉)) → (𝑋 ⊕ ( ⊥ ‘𝑋)) ∈ 𝑆) |
22 | 7, 8 | lss1 20781 | . . . . . . . . 9 ⊢ (𝑈 ∈ LMod → 𝑉 ∈ 𝑆) |
23 | 5, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ 𝑆) |
24 | 23 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉)) → 𝑉 ∈ 𝑆) |
25 | df-pss 3967 | . . . . . . . . 9 ⊢ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊊ 𝑉 ↔ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉)) | |
26 | 25 | biimpri 227 | . . . . . . . 8 ⊢ (((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉) → (𝑋 ⊕ ( ⊥ ‘𝑋)) ⊊ 𝑉) |
27 | 26 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉)) → (𝑋 ⊕ ( ⊥ ‘𝑋)) ⊊ 𝑉) |
28 | 8, 19, 20, 21, 24, 27 | lpssat 38346 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉)) → ∃𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋)))) |
29 | 28 | ex 412 | . . . . 5 ⊢ (𝜑 → (((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉) → ∃𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))))) |
30 | dochexmidlem1.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑈) | |
31 | 4 | 3ad2ant1 1132 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
32 | 6 | 3ad2ant1 1132 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → 𝑋 ∈ 𝑆) |
33 | simp2 1136 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → 𝑝 ∈ 𝐴) | |
34 | dochexmidlem8.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑈) | |
35 | eqid 2731 | . . . . . . . . 9 ⊢ (𝑋 ⊕ 𝑝) = (𝑋 ⊕ 𝑝) | |
36 | dochexmidlem8.xn | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ≠ { 0 }) | |
37 | 36 | 3ad2ant1 1132 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → 𝑋 ≠ { 0 }) |
38 | dochexmidlem8.c | . . . . . . . . . 10 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | |
39 | 38 | 3ad2ant1 1132 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
40 | simp3 1137 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) | |
41 | 2, 11, 3, 7, 8, 30, 14, 19, 31, 32, 33, 34, 35, 37, 39, 40 | dochexmidlem6 40799 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → (𝑋 ⊕ 𝑝) = 𝑋) |
42 | 2, 11, 3, 7, 8, 30, 14, 19, 31, 32, 33, 34, 35, 37, 39, 40 | dochexmidlem7 40800 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → (𝑋 ⊕ 𝑝) ≠ 𝑋) |
43 | 41, 42 | pm2.21ddne 3025 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋)) |
44 | 43 | 3adant3l 1179 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐴 ∧ (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋)))) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋)) |
45 | 44 | rexlimdv3a 3158 | . . . . 5 ⊢ (𝜑 → (∃𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
46 | 29, 45 | syld 47 | . . . 4 ⊢ (𝜑 → (((𝑋 ⊕ ( ⊥ ‘𝑋)) ⊆ 𝑉 ∧ (𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉) → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
47 | 18, 46 | mpand 692 | . . 3 ⊢ (𝜑 → ((𝑋 ⊕ ( ⊥ ‘𝑋)) ≠ 𝑉 → (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋))) |
48 | 47 | necon1bd 2957 | . 2 ⊢ (𝜑 → (¬ (𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋) → (𝑋 ⊕ ( ⊥ ‘𝑋)) = 𝑉)) |
49 | 1, 48 | mpi 20 | 1 ⊢ (𝜑 → (𝑋 ⊕ ( ⊥ ‘𝑋)) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∃wrex 3069 ⊆ wss 3948 ⊊ wpss 3949 {csn 4628 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 0gc0g 17392 LSSumclsm 19550 LModclmod 20702 LSubSpclss 20774 LSpanclspn 20814 LSAtomsclsa 38307 HLchlt 38683 LHypclh 39318 DVecHcdvh 40412 ocHcoch 40681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-riotaBAD 38286 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-undef 8264 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-0g 17394 df-mre 17537 df-mrc 17538 df-acs 17540 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-p1 18389 df-lat 18395 df-clat 18462 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-cntz 19229 df-oppg 19258 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-drng 20585 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lvec 20946 df-lsatoms 38309 df-lcv 38352 df-oposet 38509 df-ol 38511 df-oml 38512 df-covers 38599 df-ats 38600 df-atl 38631 df-cvlat 38655 df-hlat 38684 df-llines 38832 df-lplanes 38833 df-lvols 38834 df-lines 38835 df-psubsp 38837 df-pmap 38838 df-padd 39130 df-lhyp 39322 df-laut 39323 df-ldil 39438 df-ltrn 39439 df-trl 39493 df-tgrp 40077 df-tendo 40089 df-edring 40091 df-dveca 40337 df-disoa 40363 df-dvech 40413 df-dib 40473 df-dic 40507 df-dih 40563 df-doch 40682 df-djh 40729 |
This theorem is referenced by: dochexmid 40802 |
Copyright terms: Public domain | W3C validator |