![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
2 | neneq 2941 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | nsyli 157 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ≠ wne 2935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2936 |
This theorem is referenced by: necon1ad 2952 necon3d 2956 disjpss 4456 2f1fvneq 7264 oeeulem 8615 enp1iOLD 9296 canthp1lem2 10668 winalim2 10711 nlt1pi 10921 sqreulem 15330 rpnnen2lem11 16192 eucalglt 16547 nprm 16650 pcprmpw2 16842 pcmpt 16852 expnprm 16862 prmlem0 17066 pltnle 18321 psgnunilem1 19439 pgpfi 19551 frgpnabllem1 19819 gsumval3a 19849 ablfac1eulem 20020 pgpfaclem2 20030 ablsimpgfindlem1 20055 lspdisjb 21003 lspdisj2 21004 obselocv 21649 mhpmulcl 22060 0nnei 23003 t0dist 23216 t1sep 23261 ordthauslem 23274 hausflim 23872 bcthlem5 25243 bcth 25244 fta1g 26091 plyco0 26113 dgrnznn 26168 coeaddlem 26170 fta1 26230 vieta1lem2 26233 logcnlem3 26565 dvloglem 26569 dcubic 26765 mumullem2 27099 2sqlem8a 27345 dchrisum0flblem1 27428 colperpexlem2 28522 elntg2 28783 1loopgrnb0 29303 usgr2trlncrct 29604 ocnel 31095 hatomistici 32159 lbslsat 33246 sibfof 33896 outsideofrflx 35659 poimirlem23 37051 mblfinlem1 37065 cntotbnd 37204 heiborlem6 37224 lshpnel 38392 lshpcmp 38397 lfl1 38479 lkrshp 38514 lkrpssN 38572 atnlt 38722 atnle 38726 atlatmstc 38728 intnatN 38817 atbtwn 38856 llnnlt 38933 lplnnlt 38975 2llnjaN 38976 lvolnltN 39028 2lplnja 39029 dalem-cly 39081 dalem44 39126 2llnma3r 39198 cdlemblem 39203 lhpm0atN 39439 lhp2atnle 39443 cdlemednpq 39709 cdleme22cN 39752 cdlemg18b 40089 cdlemg42 40139 dia2dimlem1 40474 dochkrshp 40796 hgmapval0 41302 rrx2pnecoorneor 47711 |
Copyright terms: Public domain | W3C validator |