| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
| 2 | neneq 2932 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | nsyli 157 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon1ad 2943 necon3d 2947 disjpss 4427 oeeulem 8568 enp1iOLD 9232 canthp1lem2 10613 winalim2 10656 nlt1pi 10866 sqreulem 15333 rpnnen2lem11 16199 eucalglt 16562 nprm 16665 pcprmpw2 16860 pcmpt 16870 expnprm 16880 prmlem0 17083 pltnle 18304 psgnunilem1 19430 pgpfi 19542 frgpnabllem1 19810 gsumval3a 19840 ablfac1eulem 20011 pgpfaclem2 20021 ablsimpgfindlem1 20046 lspdisjb 21043 lspdisj2 21044 obselocv 21644 mhpmulcl 22043 0nnei 23006 t0dist 23219 t1sep 23264 ordthauslem 23277 hausflim 23875 bcthlem5 25235 bcth 25236 fta1g 26082 plyco0 26104 dgrnznn 26159 coeaddlem 26161 fta1 26223 vieta1lem2 26226 logcnlem3 26560 dvloglem 26564 dcubic 26763 mumullem2 27097 2sqlem8a 27343 dchrisum0flblem1 27426 colperpexlem2 28665 elntg2 28919 1loopgrnb0 29437 usgr2trlncrct 29743 ocnel 31234 hatomistici 32298 1arithufdlem4 33525 lbslsat 33619 sibfof 34338 outsideofrflx 36122 poimirlem23 37644 mblfinlem1 37658 cntotbnd 37797 heiborlem6 37817 lshpnel 38983 lshpcmp 38988 lfl1 39070 lkrshp 39105 lkrpssN 39163 atnlt 39313 atnle 39317 atlatmstc 39319 intnatN 39408 atbtwn 39447 llnnlt 39524 lplnnlt 39566 2llnjaN 39567 lvolnltN 39619 2lplnja 39620 dalem-cly 39672 dalem44 39717 2llnma3r 39789 cdlemblem 39794 lhpm0atN 40030 lhp2atnle 40034 cdlemednpq 40300 cdleme22cN 40343 cdlemg18b 40680 cdlemg42 40730 dia2dimlem1 41065 dochkrshp 41387 hgmapval0 41893 rrx2pnecoorneor 48708 |
| Copyright terms: Public domain | W3C validator |