| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
| 2 | neneq 2931 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | nsyli 157 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon1ad 2942 necon3d 2946 disjpss 4424 oeeulem 8565 enp1iOLD 9225 canthp1lem2 10606 winalim2 10649 nlt1pi 10859 sqreulem 15326 rpnnen2lem11 16192 eucalglt 16555 nprm 16658 pcprmpw2 16853 pcmpt 16863 expnprm 16873 prmlem0 17076 pltnle 18297 psgnunilem1 19423 pgpfi 19535 frgpnabllem1 19803 gsumval3a 19833 ablfac1eulem 20004 pgpfaclem2 20014 ablsimpgfindlem1 20039 lspdisjb 21036 lspdisj2 21037 obselocv 21637 mhpmulcl 22036 0nnei 22999 t0dist 23212 t1sep 23257 ordthauslem 23270 hausflim 23868 bcthlem5 25228 bcth 25229 fta1g 26075 plyco0 26097 dgrnznn 26152 coeaddlem 26154 fta1 26216 vieta1lem2 26219 logcnlem3 26553 dvloglem 26557 dcubic 26756 mumullem2 27090 2sqlem8a 27336 dchrisum0flblem1 27419 colperpexlem2 28658 elntg2 28912 1loopgrnb0 29430 usgr2trlncrct 29736 ocnel 31227 hatomistici 32291 1arithufdlem4 33518 lbslsat 33612 sibfof 34331 outsideofrflx 36115 poimirlem23 37637 mblfinlem1 37651 cntotbnd 37790 heiborlem6 37810 lshpnel 38976 lshpcmp 38981 lfl1 39063 lkrshp 39098 lkrpssN 39156 atnlt 39306 atnle 39310 atlatmstc 39312 intnatN 39401 atbtwn 39440 llnnlt 39517 lplnnlt 39559 2llnjaN 39560 lvolnltN 39612 2lplnja 39613 dalem-cly 39665 dalem44 39710 2llnma3r 39782 cdlemblem 39787 lhpm0atN 40023 lhp2atnle 40027 cdlemednpq 40293 cdleme22cN 40336 cdlemg18b 40673 cdlemg42 40723 dia2dimlem1 41058 dochkrshp 41380 hgmapval0 41886 rrx2pnecoorneor 48704 |
| Copyright terms: Public domain | W3C validator |