![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
2 | neneq 2944 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | nsyli 157 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2939 |
This theorem is referenced by: necon1ad 2955 necon3d 2959 disjpss 4467 2f1fvneq 7280 oeeulem 8638 enp1iOLD 9312 canthp1lem2 10691 winalim2 10734 nlt1pi 10944 sqreulem 15395 rpnnen2lem11 16257 eucalglt 16619 nprm 16722 pcprmpw2 16916 pcmpt 16926 expnprm 16936 prmlem0 17140 pltnle 18396 psgnunilem1 19526 pgpfi 19638 frgpnabllem1 19906 gsumval3a 19936 ablfac1eulem 20107 pgpfaclem2 20117 ablsimpgfindlem1 20142 lspdisjb 21146 lspdisj2 21147 obselocv 21766 mhpmulcl 22171 0nnei 23136 t0dist 23349 t1sep 23394 ordthauslem 23407 hausflim 24005 bcthlem5 25376 bcth 25377 fta1g 26224 plyco0 26246 dgrnznn 26301 coeaddlem 26303 fta1 26365 vieta1lem2 26368 logcnlem3 26701 dvloglem 26705 dcubic 26904 mumullem2 27238 2sqlem8a 27484 dchrisum0flblem1 27567 colperpexlem2 28754 elntg2 29015 1loopgrnb0 29535 usgr2trlncrct 29836 ocnel 31327 hatomistici 32391 1arithufdlem4 33555 lbslsat 33644 sibfof 34322 outsideofrflx 36109 poimirlem23 37630 mblfinlem1 37644 cntotbnd 37783 heiborlem6 37803 lshpnel 38965 lshpcmp 38970 lfl1 39052 lkrshp 39087 lkrpssN 39145 atnlt 39295 atnle 39299 atlatmstc 39301 intnatN 39390 atbtwn 39429 llnnlt 39506 lplnnlt 39548 2llnjaN 39549 lvolnltN 39601 2lplnja 39602 dalem-cly 39654 dalem44 39699 2llnma3r 39771 cdlemblem 39776 lhpm0atN 40012 lhp2atnle 40016 cdlemednpq 40282 cdleme22cN 40325 cdlemg18b 40662 cdlemg42 40712 dia2dimlem1 41047 dochkrshp 41369 hgmapval0 41875 rrx2pnecoorneor 48565 |
Copyright terms: Public domain | W3C validator |