| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
| 2 | neneq 2939 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | nsyli 157 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2934 |
| This theorem is referenced by: necon1ad 2950 necon3d 2954 disjpss 4441 oeeulem 8618 enp1iOLD 9291 canthp1lem2 10672 winalim2 10715 nlt1pi 10925 sqreulem 15383 rpnnen2lem11 16247 eucalglt 16609 nprm 16712 pcprmpw2 16907 pcmpt 16917 expnprm 16927 prmlem0 17130 pltnle 18353 psgnunilem1 19479 pgpfi 19591 frgpnabllem1 19859 gsumval3a 19889 ablfac1eulem 20060 pgpfaclem2 20070 ablsimpgfindlem1 20095 lspdisjb 21092 lspdisj2 21093 obselocv 21693 mhpmulcl 22092 0nnei 23055 t0dist 23268 t1sep 23313 ordthauslem 23326 hausflim 23924 bcthlem5 25285 bcth 25286 fta1g 26132 plyco0 26154 dgrnznn 26209 coeaddlem 26211 fta1 26273 vieta1lem2 26276 logcnlem3 26610 dvloglem 26614 dcubic 26813 mumullem2 27147 2sqlem8a 27393 dchrisum0flblem1 27476 colperpexlem2 28715 elntg2 28969 1loopgrnb0 29487 usgr2trlncrct 29793 ocnel 31284 hatomistici 32348 1arithufdlem4 33567 lbslsat 33661 sibfof 34377 outsideofrflx 36150 poimirlem23 37672 mblfinlem1 37686 cntotbnd 37825 heiborlem6 37845 lshpnel 39006 lshpcmp 39011 lfl1 39093 lkrshp 39128 lkrpssN 39186 atnlt 39336 atnle 39340 atlatmstc 39342 intnatN 39431 atbtwn 39470 llnnlt 39547 lplnnlt 39589 2llnjaN 39590 lvolnltN 39642 2lplnja 39643 dalem-cly 39695 dalem44 39740 2llnma3r 39812 cdlemblem 39817 lhpm0atN 40053 lhp2atnle 40057 cdlemednpq 40323 cdleme22cN 40366 cdlemg18b 40703 cdlemg42 40753 dia2dimlem1 41088 dochkrshp 41410 hgmapval0 41916 rrx2pnecoorneor 48662 |
| Copyright terms: Public domain | W3C validator |