![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
2 | neneq 2952 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | nsyli 157 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon1ad 2963 necon3d 2967 disjpss 4484 2f1fvneq 7297 oeeulem 8657 enp1iOLD 9342 canthp1lem2 10722 winalim2 10765 nlt1pi 10975 sqreulem 15408 rpnnen2lem11 16272 eucalglt 16632 nprm 16735 pcprmpw2 16929 pcmpt 16939 expnprm 16949 prmlem0 17153 pltnle 18408 psgnunilem1 19535 pgpfi 19647 frgpnabllem1 19915 gsumval3a 19945 ablfac1eulem 20116 pgpfaclem2 20126 ablsimpgfindlem1 20151 lspdisjb 21151 lspdisj2 21152 obselocv 21771 mhpmulcl 22176 0nnei 23141 t0dist 23354 t1sep 23399 ordthauslem 23412 hausflim 24010 bcthlem5 25381 bcth 25382 fta1g 26229 plyco0 26251 dgrnznn 26306 coeaddlem 26308 fta1 26368 vieta1lem2 26371 logcnlem3 26704 dvloglem 26708 dcubic 26907 mumullem2 27241 2sqlem8a 27487 dchrisum0flblem1 27570 colperpexlem2 28757 elntg2 29018 1loopgrnb0 29538 usgr2trlncrct 29839 ocnel 31330 hatomistici 32394 1arithufdlem4 33540 lbslsat 33629 sibfof 34305 outsideofrflx 36091 poimirlem23 37603 mblfinlem1 37617 cntotbnd 37756 heiborlem6 37776 lshpnel 38939 lshpcmp 38944 lfl1 39026 lkrshp 39061 lkrpssN 39119 atnlt 39269 atnle 39273 atlatmstc 39275 intnatN 39364 atbtwn 39403 llnnlt 39480 lplnnlt 39522 2llnjaN 39523 lvolnltN 39575 2lplnja 39576 dalem-cly 39628 dalem44 39673 2llnma3r 39745 cdlemblem 39750 lhpm0atN 39986 lhp2atnle 39990 cdlemednpq 40256 cdleme22cN 40299 cdlemg18b 40636 cdlemg42 40686 dia2dimlem1 41021 dochkrshp 41343 hgmapval0 41849 rrx2pnecoorneor 48449 |
Copyright terms: Public domain | W3C validator |