| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
| 2 | neneq 2936 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | nsyli 157 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2931 |
| This theorem is referenced by: necon1ad 2947 necon3d 2951 disjpss 4412 oeeulem 8525 canthp1lem2 10554 winalim2 10597 nlt1pi 10807 sqreulem 15277 rpnnen2lem11 16143 eucalglt 16506 nprm 16609 pcprmpw2 16804 pcmpt 16814 expnprm 16824 prmlem0 17027 pltnle 18252 psgnunilem1 19415 pgpfi 19527 frgpnabllem1 19795 gsumval3a 19825 ablfac1eulem 19996 pgpfaclem2 20006 ablsimpgfindlem1 20031 lspdisjb 21073 lspdisj2 21074 obselocv 21675 mhpmulcl 22074 0nnei 23037 t0dist 23250 t1sep 23295 ordthauslem 23308 hausflim 23906 bcthlem5 25265 bcth 25266 fta1g 26112 plyco0 26134 dgrnznn 26189 coeaddlem 26191 fta1 26253 vieta1lem2 26256 logcnlem3 26590 dvloglem 26594 dcubic 26793 mumullem2 27127 2sqlem8a 27373 dchrisum0flblem1 27456 colperpexlem2 28719 elntg2 28974 1loopgrnb0 29492 usgr2trlncrct 29795 ocnel 31289 hatomistici 32353 1arithufdlem4 33523 lbslsat 33640 sibfof 34364 outsideofrflx 36182 poimirlem23 37693 mblfinlem1 37707 cntotbnd 37846 heiborlem6 37866 lshpnel 39092 lshpcmp 39097 lfl1 39179 lkrshp 39214 lkrpssN 39272 atnlt 39422 atnle 39426 atlatmstc 39428 intnatN 39516 atbtwn 39555 llnnlt 39632 lplnnlt 39674 2llnjaN 39675 lvolnltN 39727 2lplnja 39728 dalem-cly 39780 dalem44 39825 2llnma3r 39897 cdlemblem 39902 lhpm0atN 40138 lhp2atnle 40142 cdlemednpq 40408 cdleme22cN 40451 cdlemg18b 40788 cdlemg42 40838 dia2dimlem1 41173 dochkrshp 41495 hgmapval0 42001 rrx2pnecoorneor 48830 |
| Copyright terms: Public domain | W3C validator |