![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
2 | neneq 2944 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | nsyli 157 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2939 |
This theorem is referenced by: necon1ad 2955 necon3d 2959 disjpss 4459 2f1fvneq 7261 oeeulem 8603 enp1iOLD 9282 canthp1lem2 10650 winalim2 10693 nlt1pi 10903 sqreulem 15310 rpnnen2lem11 16171 eucalglt 16526 nprm 16629 pcprmpw2 16819 pcmpt 16829 expnprm 16839 prmlem0 17043 pltnle 18295 psgnunilem1 19402 pgpfi 19514 frgpnabllem1 19782 gsumval3a 19812 ablfac1eulem 19983 pgpfaclem2 19993 ablsimpgfindlem1 20018 lspdisjb 20884 lspdisj2 20885 obselocv 21502 mhpmulcl 21911 0nnei 22836 t0dist 23049 t1sep 23094 ordthauslem 23107 hausflim 23705 bcthlem5 25076 bcth 25077 fta1g 25920 plyco0 25941 dgrnznn 25996 coeaddlem 25998 fta1 26057 vieta1lem2 26060 logcnlem3 26388 dvloglem 26392 dcubic 26587 mumullem2 26920 2sqlem8a 27164 dchrisum0flblem1 27247 colperpexlem2 28249 elntg2 28510 1loopgrnb0 29026 usgr2trlncrct 29327 ocnel 30818 hatomistici 31882 lbslsat 32989 sibfof 33637 outsideofrflx 35403 poimirlem23 36814 mblfinlem1 36828 cntotbnd 36967 heiborlem6 36987 lshpnel 38156 lshpcmp 38161 lfl1 38243 lkrshp 38278 lkrpssN 38336 atnlt 38486 atnle 38490 atlatmstc 38492 intnatN 38581 atbtwn 38620 llnnlt 38697 lplnnlt 38739 2llnjaN 38740 lvolnltN 38792 2lplnja 38793 dalem-cly 38845 dalem44 38890 2llnma3r 38962 cdlemblem 38967 lhpm0atN 39203 lhp2atnle 39207 cdlemednpq 39473 cdleme22cN 39516 cdlemg18b 39853 cdlemg42 39903 dia2dimlem1 40238 dochkrshp 40560 hgmapval0 41066 rrx2pnecoorneor 47488 |
Copyright terms: Public domain | W3C validator |