Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
2 | neneq 2948 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | nsyli 157 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon1ad 2959 necon3d 2963 disjpss 4391 2f1fvneq 7114 oeeulem 8394 enp1i 8982 canthp1lem2 10340 winalim2 10383 nlt1pi 10593 sqreulem 14999 rpnnen2lem11 15861 eucalglt 16218 nprm 16321 pcprmpw2 16511 pcmpt 16521 expnprm 16531 prmlem0 16735 pltnle 17971 psgnunilem1 19016 pgpfi 19125 frgpnabllem1 19389 gsumval3a 19419 ablfac1eulem 19590 pgpfaclem2 19600 ablsimpgfindlem1 19625 lspdisjb 20303 lspdisj2 20304 obselocv 20845 mhpmulcl 21249 0nnei 22171 t0dist 22384 t1sep 22429 ordthauslem 22442 hausflim 23040 bcthlem5 24397 bcth 24398 fta1g 25237 plyco0 25258 dgrnznn 25313 coeaddlem 25315 fta1 25373 vieta1lem2 25376 logcnlem3 25704 dvloglem 25708 dcubic 25901 mumullem2 26234 2sqlem8a 26478 dchrisum0flblem1 26561 colperpexlem2 26996 elntg2 27256 1loopgrnb0 27772 usgr2trlncrct 28072 ocnel 29561 hatomistici 30625 lbslsat 31601 sibfof 32207 outsideofrflx 34356 poimirlem23 35727 mblfinlem1 35741 cntotbnd 35881 heiborlem6 35901 lshpnel 36924 lshpcmp 36929 lfl1 37011 lkrshp 37046 lkrpssN 37104 atnlt 37254 atnle 37258 atlatmstc 37260 intnatN 37348 atbtwn 37387 llnnlt 37464 lplnnlt 37506 2llnjaN 37507 lvolnltN 37559 2lplnja 37560 dalem-cly 37612 dalem44 37657 2llnma3r 37729 cdlemblem 37734 lhpm0atN 37970 lhp2atnle 37974 cdlemednpq 38240 cdleme22cN 38283 cdlemg18b 38620 cdlemg42 38670 dia2dimlem1 39005 dochkrshp 39327 hgmapval0 39833 rrx2pnecoorneor 45949 |
Copyright terms: Public domain | W3C validator |