![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
2 | neneq 2947 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | nsyli 157 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2942 |
This theorem is referenced by: necon1ad 2958 necon3d 2962 disjpss 4461 2f1fvneq 7259 oeeulem 8601 enp1iOLD 9280 canthp1lem2 10648 winalim2 10691 nlt1pi 10901 sqreulem 15306 rpnnen2lem11 16167 eucalglt 16522 nprm 16625 pcprmpw2 16815 pcmpt 16825 expnprm 16835 prmlem0 17039 pltnle 18291 psgnunilem1 19361 pgpfi 19473 frgpnabllem1 19741 gsumval3a 19771 ablfac1eulem 19942 pgpfaclem2 19952 ablsimpgfindlem1 19977 lspdisjb 20739 lspdisj2 20740 obselocv 21283 mhpmulcl 21692 0nnei 22616 t0dist 22829 t1sep 22874 ordthauslem 22887 hausflim 23485 bcthlem5 24845 bcth 24846 fta1g 25685 plyco0 25706 dgrnznn 25761 coeaddlem 25763 fta1 25821 vieta1lem2 25824 logcnlem3 26152 dvloglem 26156 dcubic 26351 mumullem2 26684 2sqlem8a 26928 dchrisum0flblem1 27011 colperpexlem2 27982 elntg2 28243 1loopgrnb0 28759 usgr2trlncrct 29060 ocnel 30551 hatomistici 31615 lbslsat 32701 sibfof 33339 outsideofrflx 35099 poimirlem23 36511 mblfinlem1 36525 cntotbnd 36664 heiborlem6 36684 lshpnel 37853 lshpcmp 37858 lfl1 37940 lkrshp 37975 lkrpssN 38033 atnlt 38183 atnle 38187 atlatmstc 38189 intnatN 38278 atbtwn 38317 llnnlt 38394 lplnnlt 38436 2llnjaN 38437 lvolnltN 38489 2lplnja 38490 dalem-cly 38542 dalem44 38587 2llnma3r 38659 cdlemblem 38664 lhpm0atN 38900 lhp2atnle 38904 cdlemednpq 39170 cdleme22cN 39213 cdlemg18b 39550 cdlemg42 39600 dia2dimlem1 39935 dochkrshp 40257 hgmapval0 40763 rrx2pnecoorneor 47401 |
Copyright terms: Public domain | W3C validator |