| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
| 2 | neneq 2932 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | nsyli 157 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon1ad 2943 necon3d 2947 disjpss 4409 oeeulem 8511 canthp1lem2 10536 winalim2 10579 nlt1pi 10789 sqreulem 15259 rpnnen2lem11 16125 eucalglt 16488 nprm 16591 pcprmpw2 16786 pcmpt 16796 expnprm 16806 prmlem0 17009 pltnle 18234 psgnunilem1 19398 pgpfi 19510 frgpnabllem1 19778 gsumval3a 19808 ablfac1eulem 19979 pgpfaclem2 19989 ablsimpgfindlem1 20014 lspdisjb 21056 lspdisj2 21057 obselocv 21658 mhpmulcl 22057 0nnei 23020 t0dist 23233 t1sep 23278 ordthauslem 23291 hausflim 23889 bcthlem5 25248 bcth 25249 fta1g 26095 plyco0 26117 dgrnznn 26172 coeaddlem 26174 fta1 26236 vieta1lem2 26239 logcnlem3 26573 dvloglem 26577 dcubic 26776 mumullem2 27110 2sqlem8a 27356 dchrisum0flblem1 27439 colperpexlem2 28702 elntg2 28956 1loopgrnb0 29474 usgr2trlncrct 29777 ocnel 31268 hatomistici 32332 1arithufdlem4 33502 lbslsat 33619 sibfof 34343 outsideofrflx 36140 poimirlem23 37662 mblfinlem1 37676 cntotbnd 37815 heiborlem6 37835 lshpnel 39001 lshpcmp 39006 lfl1 39088 lkrshp 39123 lkrpssN 39181 atnlt 39331 atnle 39335 atlatmstc 39337 intnatN 39425 atbtwn 39464 llnnlt 39541 lplnnlt 39583 2llnjaN 39584 lvolnltN 39636 2lplnja 39637 dalem-cly 39689 dalem44 39734 2llnma3r 39806 cdlemblem 39811 lhpm0atN 40047 lhp2atnle 40051 cdlemednpq 40317 cdleme22cN 40360 cdlemg18b 40697 cdlemg42 40747 dia2dimlem1 41082 dochkrshp 41404 hgmapval0 41910 rrx2pnecoorneor 48726 |
| Copyright terms: Public domain | W3C validator |