![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
2 | neneq 2936 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | nsyli 157 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ≠ wne 2930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2931 |
This theorem is referenced by: necon1ad 2947 necon3d 2951 disjpss 4461 2f1fvneq 7268 oeeulem 8620 enp1iOLD 9303 canthp1lem2 10676 winalim2 10719 nlt1pi 10929 sqreulem 15338 rpnnen2lem11 16200 eucalglt 16555 nprm 16658 pcprmpw2 16850 pcmpt 16860 expnprm 16870 prmlem0 17074 pltnle 18329 psgnunilem1 19452 pgpfi 19564 frgpnabllem1 19832 gsumval3a 19862 ablfac1eulem 20033 pgpfaclem2 20043 ablsimpgfindlem1 20068 lspdisjb 21018 lspdisj2 21019 obselocv 21666 mhpmulcl 22081 0nnei 23046 t0dist 23259 t1sep 23304 ordthauslem 23317 hausflim 23915 bcthlem5 25286 bcth 25287 fta1g 26134 plyco0 26156 dgrnznn 26211 coeaddlem 26213 fta1 26273 vieta1lem2 26276 logcnlem3 26608 dvloglem 26612 dcubic 26808 mumullem2 27142 2sqlem8a 27388 dchrisum0flblem1 27471 colperpexlem2 28591 elntg2 28852 1loopgrnb0 29372 usgr2trlncrct 29673 ocnel 31164 hatomistici 32228 lbslsat 33384 sibfof 34030 outsideofrflx 35793 poimirlem23 37186 mblfinlem1 37200 cntotbnd 37339 heiborlem6 37359 lshpnel 38524 lshpcmp 38529 lfl1 38611 lkrshp 38646 lkrpssN 38704 atnlt 38854 atnle 38858 atlatmstc 38860 intnatN 38949 atbtwn 38988 llnnlt 39065 lplnnlt 39107 2llnjaN 39108 lvolnltN 39160 2lplnja 39161 dalem-cly 39213 dalem44 39258 2llnma3r 39330 cdlemblem 39335 lhpm0atN 39571 lhp2atnle 39575 cdlemednpq 39841 cdleme22cN 39884 cdlemg18b 40221 cdlemg42 40271 dia2dimlem1 40606 dochkrshp 40928 hgmapval0 41434 rrx2pnecoorneor 47900 |
Copyright terms: Public domain | W3C validator |