Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3ad | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
necon3ad.1 | ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3ad | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3ad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝐴 = 𝐵)) | |
2 | neneq 2950 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | nsyli 157 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2945 |
This theorem is referenced by: necon1ad 2961 necon3d 2965 disjpss 4395 2f1fvneq 7142 oeeulem 8441 enp1i 9061 canthp1lem2 10418 winalim2 10461 nlt1pi 10671 sqreulem 15080 rpnnen2lem11 15942 eucalglt 16299 nprm 16402 pcprmpw2 16592 pcmpt 16602 expnprm 16612 prmlem0 16816 pltnle 18065 psgnunilem1 19110 pgpfi 19219 frgpnabllem1 19483 gsumval3a 19513 ablfac1eulem 19684 pgpfaclem2 19694 ablsimpgfindlem1 19719 lspdisjb 20397 lspdisj2 20398 obselocv 20944 mhpmulcl 21348 0nnei 22272 t0dist 22485 t1sep 22530 ordthauslem 22543 hausflim 23141 bcthlem5 24501 bcth 24502 fta1g 25341 plyco0 25362 dgrnznn 25417 coeaddlem 25419 fta1 25477 vieta1lem2 25480 logcnlem3 25808 dvloglem 25812 dcubic 26005 mumullem2 26338 2sqlem8a 26582 dchrisum0flblem1 26665 colperpexlem2 27101 elntg2 27362 1loopgrnb0 27878 usgr2trlncrct 28180 ocnel 29669 hatomistici 30733 lbslsat 31708 sibfof 32316 outsideofrflx 34438 poimirlem23 35809 mblfinlem1 35823 cntotbnd 35963 heiborlem6 35983 lshpnel 37004 lshpcmp 37009 lfl1 37091 lkrshp 37126 lkrpssN 37184 atnlt 37334 atnle 37338 atlatmstc 37340 intnatN 37428 atbtwn 37467 llnnlt 37544 lplnnlt 37586 2llnjaN 37587 lvolnltN 37639 2lplnja 37640 dalem-cly 37692 dalem44 37737 2llnma3r 37809 cdlemblem 37814 lhpm0atN 38050 lhp2atnle 38054 cdlemednpq 38320 cdleme22cN 38363 cdlemg18b 38700 cdlemg42 38750 dia2dimlem1 39085 dochkrshp 39407 hgmapval0 39913 rrx2pnecoorneor 46072 |
Copyright terms: Public domain | W3C validator |