![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > parteq2 | Structured version Visualization version GIF version |
Description: Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.) |
Ref | Expression |
---|---|
parteq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Part 𝐴 ↔ 𝑅 Part 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2738 | . . 3 ⊢ (𝐴 = 𝐵 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐵)) | |
2 | 1 | anbi2d 628 | . 2 ⊢ (𝐴 = 𝐵 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐵))) |
3 | dfpart2 38150 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
4 | dfpart2 38150 | . 2 ⊢ (𝑅 Part 𝐵 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Part 𝐴 ↔ 𝑅 Part 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 dom cdm 5669 / cqs 8701 Disj wdisjALTV 37588 Part wpart 37593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-cleq 2718 df-dmqs 38020 df-part 38147 |
This theorem is referenced by: parteq12 38157 |
Copyright terms: Public domain | W3C validator |