Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  parteq2 Structured version   Visualization version   GIF version

Theorem parteq2 36995
Description: Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.)
Assertion
Ref Expression
parteq2 (𝐴 = 𝐵 → (𝑅 Part 𝐴𝑅 Part 𝐵))

Proof of Theorem parteq2
StepHypRef Expression
1 eqeq2 2748 . . 3 (𝐴 = 𝐵 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐵))
21anbi2d 630 . 2 (𝐴 = 𝐵 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐵)))
3 dfpart2 36989 . 2 (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
4 dfpart2 36989 . 2 (𝑅 Part 𝐵 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐵))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝑅 Part 𝐴𝑅 Part 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  dom cdm 5600   / cqs 8528   Disj wdisjALTV 36421   Part wpart 36426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1780  df-cleq 2728  df-dmqs 36859  df-part 36986
This theorem is referenced by:  parteq12  36996
  Copyright terms: Public domain W3C validator