![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > parteq2 | Structured version Visualization version GIF version |
Description: Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.) |
Ref | Expression |
---|---|
parteq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Part 𝐴 ↔ 𝑅 Part 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2744 | . . 3 ⊢ (𝐴 = 𝐵 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐵)) | |
2 | 1 | anbi2d 629 | . 2 ⊢ (𝐴 = 𝐵 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐵))) |
3 | dfpart2 37634 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
4 | dfpart2 37634 | . 2 ⊢ (𝑅 Part 𝐵 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Part 𝐴 ↔ 𝑅 Part 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 dom cdm 5676 / cqs 8701 Disj wdisjALTV 37072 Part wpart 37077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-dmqs 37504 df-part 37631 |
This theorem is referenced by: parteq12 37641 |
Copyright terms: Public domain | W3C validator |