| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > parteq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.) |
| Ref | Expression |
|---|---|
| parteq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Part 𝐴 ↔ 𝑅 Part 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2746 | . . 3 ⊢ (𝐴 = 𝐵 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐵)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝐴 = 𝐵 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐵))) |
| 3 | dfpart2 38711 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
| 4 | dfpart2 38711 | . 2 ⊢ (𝑅 Part 𝐵 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Part 𝐴 ↔ 𝑅 Part 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 dom cdm 5667 / cqs 8727 Disj wdisjALTV 38157 Part wpart 38162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-dmqs 38581 df-part 38708 |
| This theorem is referenced by: parteq12 38718 |
| Copyright terms: Public domain | W3C validator |