Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  parteq2 Structured version   Visualization version   GIF version

Theorem parteq2 38731
Description: Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.)
Assertion
Ref Expression
parteq2 (𝐴 = 𝐵 → (𝑅 Part 𝐴𝑅 Part 𝐵))

Proof of Theorem parteq2
StepHypRef Expression
1 eqeq2 2752 . . 3 (𝐴 = 𝐵 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐵))
21anbi2d 629 . 2 (𝐴 = 𝐵 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐵)))
3 dfpart2 38725 . 2 (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴))
4 dfpart2 38725 . 2 (𝑅 Part 𝐵 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐵))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝑅 Part 𝐴𝑅 Part 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  dom cdm 5700   / cqs 8762   Disj wdisjALTV 38169   Part wpart 38174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-dmqs 38595  df-part 38722
This theorem is referenced by:  parteq12  38732
  Copyright terms: Public domain W3C validator