Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  parteq12 Structured version   Visualization version   GIF version

Theorem parteq12 38758
Description: Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.)
Assertion
Ref Expression
parteq12 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑅 Part 𝐴𝑆 Part 𝐵))

Proof of Theorem parteq12
StepHypRef Expression
1 parteq1 38756 . 2 (𝑅 = 𝑆 → (𝑅 Part 𝐴𝑆 Part 𝐴))
2 parteq2 38757 . 2 (𝐴 = 𝐵 → (𝑆 Part 𝐴𝑆 Part 𝐵))
31, 2sylan9bb 509 1 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑅 Part 𝐴𝑆 Part 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540   Part wpart 38198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8627  df-qs 8631  df-coss 38392  df-cnvrefrel 38508  df-dmqs 38620  df-funALTV 38664  df-disjALTV 38687  df-part 38748
This theorem is referenced by:  partsuc2  38761  partsuc  38762
  Copyright terms: Public domain W3C validator