Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  parteq12 Structured version   Visualization version   GIF version

Theorem parteq12 38763
Description: Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.)
Assertion
Ref Expression
parteq12 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑅 Part 𝐴𝑆 Part 𝐵))

Proof of Theorem parteq12
StepHypRef Expression
1 parteq1 38761 . 2 (𝑅 = 𝑆 → (𝑅 Part 𝐴𝑆 Part 𝐴))
2 parteq2 38762 . 2 (𝐴 = 𝐵 → (𝑆 Part 𝐴𝑆 Part 𝐵))
31, 2sylan9bb 509 1 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑅 Part 𝐴𝑆 Part 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540   Part wpart 38203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ec 8675  df-qs 8679  df-coss 38397  df-cnvrefrel 38513  df-dmqs 38625  df-funALTV 38669  df-disjALTV 38692  df-part 38753
This theorem is referenced by:  partsuc2  38766  partsuc  38767
  Copyright terms: Public domain W3C validator