Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  parteq12 Structured version   Visualization version   GIF version

Theorem parteq12 38772
Description: Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.)
Assertion
Ref Expression
parteq12 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑅 Part 𝐴𝑆 Part 𝐵))

Proof of Theorem parteq12
StepHypRef Expression
1 parteq1 38770 . 2 (𝑅 = 𝑆 → (𝑅 Part 𝐴𝑆 Part 𝐴))
2 parteq2 38771 . 2 (𝐴 = 𝐵 → (𝑆 Part 𝐴𝑆 Part 𝐵))
31, 2sylan9bb 509 1 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑅 Part 𝐴𝑆 Part 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539   Part wpart 38215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-ec 8755  df-qs 8759  df-coss 38407  df-cnvrefrel 38523  df-dmqs 38635  df-funALTV 38678  df-disjALTV 38701  df-part 38762
This theorem is referenced by:  partsuc2  38775  partsuc  38776
  Copyright terms: Public domain W3C validator