| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > parteq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for partition. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| Ref | Expression |
|---|---|
| parteq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjdmqseqeq1 38679 | . 2 ⊢ (𝑅 = 𝑆 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))) | |
| 2 | dfpart2 38711 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
| 3 | dfpart2 38711 | . 2 ⊢ (𝑆 Part 𝐴 ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 dom cdm 5667 / cqs 8727 Disj wdisjALTV 38157 Part wpart 38162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ec 8730 df-qs 8734 df-coss 38353 df-cnvrefrel 38469 df-dmqs 38581 df-funALTV 38624 df-disjALTV 38647 df-part 38708 |
| This theorem is referenced by: parteq12 38718 parteq1i 38719 parteq1d 38720 |
| Copyright terms: Public domain | W3C validator |