Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > parteq1 | Structured version Visualization version GIF version |
Description: Equality theorem for partition. (Contributed by Peter Mazsa, 5-Oct-2021.) |
Ref | Expression |
---|---|
parteq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjdmqseqeq1 36957 | . 2 ⊢ (𝑅 = 𝑆 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))) | |
2 | dfpart2 36989 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
3 | dfpart2 36989 | . 2 ⊢ (𝑆 Part 𝐴 ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴)) | |
4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 dom cdm 5600 / cqs 8528 Disj wdisjALTV 36421 Part wpart 36426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3341 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ec 8531 df-qs 8535 df-coss 36631 df-cnvrefrel 36747 df-dmqs 36859 df-funALTV 36902 df-disjALTV 36925 df-part 36986 |
This theorem is referenced by: parteq12 36996 parteq1i 36997 parteq1d 36998 |
Copyright terms: Public domain | W3C validator |