| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > parteq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for partition. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| Ref | Expression |
|---|---|
| parteq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjdmqseqeq1 38774 | . 2 ⊢ (𝑅 = 𝑆 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))) | |
| 2 | dfpart2 38806 | . 2 ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
| 3 | dfpart2 38806 | . 2 ⊢ (𝑆 Part 𝐴 ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴)) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 dom cdm 5616 / cqs 8621 Disj wdisjALTV 38248 Part wpart 38253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 df-qs 8628 df-coss 38447 df-cnvrefrel 38563 df-dmqs 38675 df-funALTV 38719 df-disjALTV 38742 df-part 38803 |
| This theorem is referenced by: parteq12 38813 parteq1i 38814 parteq1d 38815 |
| Copyright terms: Public domain | W3C validator |