MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orcoms Structured version   Visualization version   GIF version

Theorem orcoms 868
Description: Commutation of disjuncts in antecedent. (Contributed by NM, 2-Dec-2012.)
Hypothesis
Ref Expression
orcoms.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
orcoms ((𝜓𝜑) → 𝜒)

Proof of Theorem orcoms
StepHypRef Expression
1 pm1.4 865 . 2 ((𝜓𝜑) → (𝜑𝜓))
2 orcoms.1 . 2 ((𝜑𝜓) → 𝜒)
31, 2syl 17 1 ((𝜓𝜑) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by:  olcs  872  19.40b  1892  r19.30OLD  3266  propeqop  5415  pwssun  5476  sorpsscmpl  7565  hashinfxadd  14028  swrdnd  14295  pfxnd0  14329  dvasin  35788  dvacos  35789  line2ylem  45985  line2xlem  45987
  Copyright terms: Public domain W3C validator