Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orcoms | Structured version Visualization version GIF version |
Description: Commutation of disjuncts in antecedent. (Contributed by NM, 2-Dec-2012.) |
Ref | Expression |
---|---|
orcoms.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
orcoms | ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.4 865 | . 2 ⊢ ((𝜓 ∨ 𝜑) → (𝜑 ∨ 𝜓)) | |
2 | orcoms.1 | . 2 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
3 | 1, 2 | syl 17 | 1 ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: olcs 872 19.40b 1892 r19.30OLD 3266 propeqop 5415 pwssun 5476 sorpsscmpl 7565 hashinfxadd 14028 swrdnd 14295 pfxnd0 14329 dvasin 35788 dvacos 35789 line2ylem 45985 line2xlem 45987 |
Copyright terms: Public domain | W3C validator |