MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orcoms Structured version   Visualization version   GIF version

Theorem orcoms 871
Description: Commutation of disjuncts in antecedent. (Contributed by NM, 2-Dec-2012.)
Hypothesis
Ref Expression
orcoms.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
orcoms ((𝜓𝜑) → 𝜒)

Proof of Theorem orcoms
StepHypRef Expression
1 pm1.4 868 . 2 ((𝜓𝜑) → (𝜑𝜓))
2 orcoms.1 . 2 ((𝜑𝜓) → 𝜒)
31, 2syl 17 1 ((𝜓𝜑) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847
This theorem is referenced by:  olcs  875  19.40b  1887  r19.30OLD  3127  propeqop  5526  pwssun  5590  sorpsscmpl  7769  hashinfxadd  14434  swrdnd  14702  pfxnd0  14736  dvasin  37664  dvacos  37665  line2ylem  48485  line2xlem  48487
  Copyright terms: Public domain W3C validator