Proof of Theorem prneimg
Step | Hyp | Ref
| Expression |
1 | | preq12bg 4790 |
. . . . 5
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) |
2 | | orddi 1008 |
. . . . . 6
⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) ↔ (((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐴 = 𝐶 ∨ 𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐷 ∨ 𝐵 = 𝐶)))) |
3 | | simpll 765 |
. . . . . . 7
⊢ ((((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐴 = 𝐶 ∨ 𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐷 ∨ 𝐵 = 𝐶))) → (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
4 | | pm1.4 867 |
. . . . . . . 8
⊢ ((𝐵 = 𝐷 ∨ 𝐵 = 𝐶) → (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)) |
5 | 4 | ad2antll 727 |
. . . . . . 7
⊢ ((((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐴 = 𝐶 ∨ 𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐷 ∨ 𝐵 = 𝐶))) → (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)) |
6 | 3, 5 | jca 513 |
. . . . . 6
⊢ ((((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐴 = 𝐶 ∨ 𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐷 ∨ 𝐵 = 𝐶))) → ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷))) |
7 | 2, 6 | sylbi 216 |
. . . . 5
⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) → ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷))) |
8 | 1, 7 | syl6bi 253 |
. . . 4
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)))) |
9 | | ianor 980 |
. . . . . 6
⊢ (¬
(𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ↔ (¬ 𝐴 ≠ 𝐶 ∨ ¬ 𝐴 ≠ 𝐷)) |
10 | | nne 2945 |
. . . . . . 7
⊢ (¬
𝐴 ≠ 𝐶 ↔ 𝐴 = 𝐶) |
11 | | nne 2945 |
. . . . . . 7
⊢ (¬
𝐴 ≠ 𝐷 ↔ 𝐴 = 𝐷) |
12 | 10, 11 | orbi12i 913 |
. . . . . 6
⊢ ((¬
𝐴 ≠ 𝐶 ∨ ¬ 𝐴 ≠ 𝐷) ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
13 | 9, 12 | bitr2i 276 |
. . . . 5
⊢ ((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ↔ ¬ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) |
14 | | ianor 980 |
. . . . . 6
⊢ (¬
(𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ↔ (¬ 𝐵 ≠ 𝐶 ∨ ¬ 𝐵 ≠ 𝐷)) |
15 | | nne 2945 |
. . . . . . 7
⊢ (¬
𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶) |
16 | | nne 2945 |
. . . . . . 7
⊢ (¬
𝐵 ≠ 𝐷 ↔ 𝐵 = 𝐷) |
17 | 15, 16 | orbi12i 913 |
. . . . . 6
⊢ ((¬
𝐵 ≠ 𝐶 ∨ ¬ 𝐵 ≠ 𝐷) ↔ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)) |
18 | 14, 17 | bitr2i 276 |
. . . . 5
⊢ ((𝐵 = 𝐶 ∨ 𝐵 = 𝐷) ↔ ¬ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷)) |
19 | 13, 18 | anbi12i 628 |
. . . 4
⊢ (((𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ∧ (𝐵 = 𝐶 ∨ 𝐵 = 𝐷)) ↔ (¬ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ ¬ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷))) |
20 | 8, 19 | syl6ib 251 |
. . 3
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (¬ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ ¬ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷)))) |
21 | | pm4.56 987 |
. . 3
⊢ ((¬
(𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ ¬ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷)) ↔ ¬ ((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∨ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷))) |
22 | 20, 21 | syl6ib 251 |
. 2
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ¬ ((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∨ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷)))) |
23 | 22 | necon2ad 2956 |
1
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → (((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∨ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})) |