MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prneimg Structured version   Visualization version   GIF version

Theorem prneimg 4854
Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
Assertion
Ref Expression
prneimg (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))

Proof of Theorem prneimg
StepHypRef Expression
1 preq12bg 4853 . . . . 5 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
2 orddi 1012 . . . . . 6 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))))
3 simpll 767 . . . . . . 7 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → (𝐴 = 𝐶𝐴 = 𝐷))
4 pm1.4 870 . . . . . . . 8 ((𝐵 = 𝐷𝐵 = 𝐶) → (𝐵 = 𝐶𝐵 = 𝐷))
54ad2antll 729 . . . . . . 7 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → (𝐵 = 𝐶𝐵 = 𝐷))
63, 5jca 511 . . . . . 6 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
72, 6sylbi 217 . . . . 5 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
81, 7biimtrdi 253 . . . 4 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))
9 ianor 984 . . . . . 6 (¬ (𝐴𝐶𝐴𝐷) ↔ (¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷))
10 nne 2944 . . . . . . 7 𝐴𝐶𝐴 = 𝐶)
11 nne 2944 . . . . . . 7 𝐴𝐷𝐴 = 𝐷)
1210, 11orbi12i 915 . . . . . 6 ((¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷) ↔ (𝐴 = 𝐶𝐴 = 𝐷))
139, 12bitr2i 276 . . . . 5 ((𝐴 = 𝐶𝐴 = 𝐷) ↔ ¬ (𝐴𝐶𝐴𝐷))
14 ianor 984 . . . . . 6 (¬ (𝐵𝐶𝐵𝐷) ↔ (¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷))
15 nne 2944 . . . . . . 7 𝐵𝐶𝐵 = 𝐶)
16 nne 2944 . . . . . . 7 𝐵𝐷𝐵 = 𝐷)
1715, 16orbi12i 915 . . . . . 6 ((¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷) ↔ (𝐵 = 𝐶𝐵 = 𝐷))
1814, 17bitr2i 276 . . . . 5 ((𝐵 = 𝐶𝐵 = 𝐷) ↔ ¬ (𝐵𝐶𝐵𝐷))
1913, 18anbi12i 628 . . . 4 (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)) ↔ (¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)))
208, 19imbitrdi 251 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷))))
21 pm4.56 991 . . 3 ((¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)) ↔ ¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)))
2220, 21imbitrdi 251 . 2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷))))
2322necon2ad 2955 1 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  {cpr 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-v 3482  df-un 3956  df-sn 4627  df-pr 4629
This theorem is referenced by:  prnebg  4856  opthhausdorff  5522  symg2bas  19410  m2detleib  22637  umgrvad2edg  29230  usgrexmpldifpr  29275  usgrexmpl1lem  47980  usgrexmpl2lem  47985  usgrexmpl2nb0  47990  usgrexmpl2nb1  47991  usgrexmpl2nb2  47992  usgrexmpl2nb3  47993  usgrexmpl2nb4  47994  usgrexmpl2nb5  47995  gpg5nbgrvtx03starlem1  48024  gpg5nbgrvtx03starlem2  48025  gpg5nbgrvtx03starlem3  48026  gpg5nbgrvtx13starlem1  48027  gpg5nbgrvtx13starlem2  48028  gpg5nbgrvtx13starlem3  48029  zlmodzxzldeplem  48415  line2x  48675  inlinecirc02plem  48707
  Copyright terms: Public domain W3C validator