MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prneimg Structured version   Visualization version   GIF version

Theorem prneimg 4821
Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
Assertion
Ref Expression
prneimg (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))

Proof of Theorem prneimg
StepHypRef Expression
1 preq12bg 4820 . . . . 5 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
2 orddi 1011 . . . . . 6 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))))
3 simpll 766 . . . . . . 7 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → (𝐴 = 𝐶𝐴 = 𝐷))
4 pm1.4 869 . . . . . . . 8 ((𝐵 = 𝐷𝐵 = 𝐶) → (𝐵 = 𝐶𝐵 = 𝐷))
54ad2antll 729 . . . . . . 7 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → (𝐵 = 𝐶𝐵 = 𝐷))
63, 5jca 511 . . . . . 6 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
72, 6sylbi 217 . . . . 5 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
81, 7biimtrdi 253 . . . 4 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))
9 ianor 983 . . . . . 6 (¬ (𝐴𝐶𝐴𝐷) ↔ (¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷))
10 nne 2930 . . . . . . 7 𝐴𝐶𝐴 = 𝐶)
11 nne 2930 . . . . . . 7 𝐴𝐷𝐴 = 𝐷)
1210, 11orbi12i 914 . . . . . 6 ((¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷) ↔ (𝐴 = 𝐶𝐴 = 𝐷))
139, 12bitr2i 276 . . . . 5 ((𝐴 = 𝐶𝐴 = 𝐷) ↔ ¬ (𝐴𝐶𝐴𝐷))
14 ianor 983 . . . . . 6 (¬ (𝐵𝐶𝐵𝐷) ↔ (¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷))
15 nne 2930 . . . . . . 7 𝐵𝐶𝐵 = 𝐶)
16 nne 2930 . . . . . . 7 𝐵𝐷𝐵 = 𝐷)
1715, 16orbi12i 914 . . . . . 6 ((¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷) ↔ (𝐵 = 𝐶𝐵 = 𝐷))
1814, 17bitr2i 276 . . . . 5 ((𝐵 = 𝐶𝐵 = 𝐷) ↔ ¬ (𝐵𝐶𝐵𝐷))
1913, 18anbi12i 628 . . . 4 (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)) ↔ (¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)))
208, 19imbitrdi 251 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷))))
21 pm4.56 990 . . 3 ((¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)) ↔ ¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)))
2220, 21imbitrdi 251 . 2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷))))
2322necon2ad 2941 1 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  {cpr 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595
This theorem is referenced by:  prnebg  4823  opthhausdorff  5480  symg2bas  19330  m2detleib  22525  umgrvad2edg  29147  usgrexmpldifpr  29192  usgrexmpl1lem  48016  usgrexmpl2lem  48021  usgrexmpl2nb0  48026  usgrexmpl2nb1  48027  usgrexmpl2nb2  48028  usgrexmpl2nb3  48029  usgrexmpl2nb4  48030  usgrexmpl2nb5  48031  gpg5nbgrvtx03starlem1  48063  gpg5nbgrvtx03starlem2  48064  gpg5nbgrvtx03starlem3  48065  gpg5nbgrvtx13starlem1  48066  gpg5nbgrvtx13starlem2  48067  gpg5nbgrvtx13starlem3  48068  gpgprismgr4cycllem2  48090  zlmodzxzldeplem  48491  line2x  48747  inlinecirc02plem  48779
  Copyright terms: Public domain W3C validator