MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prneimg Structured version   Visualization version   GIF version

Theorem prneimg 4791
Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
Assertion
Ref Expression
prneimg (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))

Proof of Theorem prneimg
StepHypRef Expression
1 preq12bg 4790 . . . . 5 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
2 orddi 1008 . . . . . 6 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))))
3 simpll 765 . . . . . . 7 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → (𝐴 = 𝐶𝐴 = 𝐷))
4 pm1.4 867 . . . . . . . 8 ((𝐵 = 𝐷𝐵 = 𝐶) → (𝐵 = 𝐶𝐵 = 𝐷))
54ad2antll 727 . . . . . . 7 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → (𝐵 = 𝐶𝐵 = 𝐷))
63, 5jca 513 . . . . . 6 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
72, 6sylbi 216 . . . . 5 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
81, 7syl6bi 253 . . . 4 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))
9 ianor 980 . . . . . 6 (¬ (𝐴𝐶𝐴𝐷) ↔ (¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷))
10 nne 2945 . . . . . . 7 𝐴𝐶𝐴 = 𝐶)
11 nne 2945 . . . . . . 7 𝐴𝐷𝐴 = 𝐷)
1210, 11orbi12i 913 . . . . . 6 ((¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷) ↔ (𝐴 = 𝐶𝐴 = 𝐷))
139, 12bitr2i 276 . . . . 5 ((𝐴 = 𝐶𝐴 = 𝐷) ↔ ¬ (𝐴𝐶𝐴𝐷))
14 ianor 980 . . . . . 6 (¬ (𝐵𝐶𝐵𝐷) ↔ (¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷))
15 nne 2945 . . . . . . 7 𝐵𝐶𝐵 = 𝐶)
16 nne 2945 . . . . . . 7 𝐵𝐷𝐵 = 𝐷)
1715, 16orbi12i 913 . . . . . 6 ((¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷) ↔ (𝐵 = 𝐶𝐵 = 𝐷))
1814, 17bitr2i 276 . . . . 5 ((𝐵 = 𝐶𝐵 = 𝐷) ↔ ¬ (𝐵𝐶𝐵𝐷))
1913, 18anbi12i 628 . . . 4 (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)) ↔ (¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)))
208, 19syl6ib 251 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷))))
21 pm4.56 987 . . 3 ((¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)) ↔ ¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)))
2220, 21syl6ib 251 . 2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷))))
2322necon2ad 2956 1 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 845   = wceq 1539  wcel 2104  wne 2941  {cpr 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-v 3439  df-un 3897  df-sn 4566  df-pr 4568
This theorem is referenced by:  prnebg  4792  opthhausdorff  5444  symg2bas  19045  m2detleib  21825  umgrvad2edg  27625  usgrexmpldifpr  27670  zlmodzxzldeplem  45897  line2x  46158  inlinecirc02plem  46190
  Copyright terms: Public domain W3C validator