MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prneimg Structured version   Visualization version   GIF version

Theorem prneimg 4830
Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
Assertion
Ref Expression
prneimg (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))

Proof of Theorem prneimg
StepHypRef Expression
1 preq12bg 4829 . . . . 5 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶))))
2 orddi 1011 . . . . . 6 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) ↔ (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))))
3 simpll 766 . . . . . . 7 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → (𝐴 = 𝐶𝐴 = 𝐷))
4 pm1.4 869 . . . . . . . 8 ((𝐵 = 𝐷𝐵 = 𝐶) → (𝐵 = 𝐶𝐵 = 𝐷))
54ad2antll 729 . . . . . . 7 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → (𝐵 = 𝐶𝐵 = 𝐷))
63, 5jca 511 . . . . . 6 ((((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐴 = 𝐶𝐵 = 𝐶)) ∧ ((𝐵 = 𝐷𝐴 = 𝐷) ∧ (𝐵 = 𝐷𝐵 = 𝐶))) → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
72, 6sylbi 217 . . . . 5 (((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)) → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
81, 7biimtrdi 253 . . . 4 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))
9 ianor 983 . . . . . 6 (¬ (𝐴𝐶𝐴𝐷) ↔ (¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷))
10 nne 2936 . . . . . . 7 𝐴𝐶𝐴 = 𝐶)
11 nne 2936 . . . . . . 7 𝐴𝐷𝐴 = 𝐷)
1210, 11orbi12i 914 . . . . . 6 ((¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷) ↔ (𝐴 = 𝐶𝐴 = 𝐷))
139, 12bitr2i 276 . . . . 5 ((𝐴 = 𝐶𝐴 = 𝐷) ↔ ¬ (𝐴𝐶𝐴𝐷))
14 ianor 983 . . . . . 6 (¬ (𝐵𝐶𝐵𝐷) ↔ (¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷))
15 nne 2936 . . . . . . 7 𝐵𝐶𝐵 = 𝐶)
16 nne 2936 . . . . . . 7 𝐵𝐷𝐵 = 𝐷)
1715, 16orbi12i 914 . . . . . 6 ((¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷) ↔ (𝐵 = 𝐶𝐵 = 𝐷))
1814, 17bitr2i 276 . . . . 5 ((𝐵 = 𝐶𝐵 = 𝐷) ↔ ¬ (𝐵𝐶𝐵𝐷))
1913, 18anbi12i 628 . . . 4 (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)) ↔ (¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)))
208, 19imbitrdi 251 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → (¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷))))
21 pm4.56 990 . . 3 ((¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)) ↔ ¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)))
2220, 21imbitrdi 251 . 2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} → ¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷))))
2322necon2ad 2947 1 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  {cpr 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-v 3461  df-un 3931  df-sn 4602  df-pr 4604
This theorem is referenced by:  prnebg  4832  opthhausdorff  5492  symg2bas  19374  m2detleib  22569  umgrvad2edg  29192  usgrexmpldifpr  29237  usgrexmpl1lem  48025  usgrexmpl2lem  48030  usgrexmpl2nb0  48035  usgrexmpl2nb1  48036  usgrexmpl2nb2  48037  usgrexmpl2nb3  48038  usgrexmpl2nb4  48039  usgrexmpl2nb5  48040  gpg5nbgrvtx03starlem1  48070  gpg5nbgrvtx03starlem2  48071  gpg5nbgrvtx03starlem3  48072  gpg5nbgrvtx13starlem1  48073  gpg5nbgrvtx13starlem2  48074  gpg5nbgrvtx13starlem3  48075  gpgprismgr4cycllem2  48095  zlmodzxzldeplem  48474  line2x  48734  inlinecirc02plem  48766
  Copyright terms: Public domain W3C validator