Proof of Theorem itsclc0yqsol
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | itscnhlc0yqe.q | . . . . 5
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) | 
| 2 |  | eqid 2736 | . . . . 5
⊢ -(2
· (𝐵 · 𝐶)) = -(2 · (𝐵 · 𝐶)) | 
| 3 |  | eqid 2736 | . . . . 5
⊢ ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) | 
| 4 | 1, 2, 3 | itsclc0yqe 48687 | . . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+
∧ (𝑋 ∈ ℝ
∧ 𝑌 ∈ ℝ))
→ ((((𝑋↑2) +
(𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))) = 0)) | 
| 5 | 4 | 3adant1r 1177 | . . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) →
((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))) = 0)) | 
| 6 | 5 | 3adant2r 1179 | . 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))) = 0)) | 
| 7 |  | 3simpa 1148 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈
ℝ)) | 
| 8 | 7 | adantr 480 | . . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) | 
| 9 | 1 | resum2sqcl 48632 | . . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈
ℝ) | 
| 10 | 8, 9 | syl 17 | . . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 𝑄 ∈ ℝ) | 
| 11 | 10 | 3ad2ant1 1133 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 ∈ ℝ) | 
| 12 | 11 | recnd 11290 | . . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 ∈ ℂ) | 
| 13 |  | simpr1 1194 | . . . . . . . . . . 11
⊢ ((𝐴 ≠ 0 ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐴 ∈ ℝ) | 
| 14 |  | simpl 482 | . . . . . . . . . . 11
⊢ ((𝐴 ≠ 0 ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐴 ≠ 0) | 
| 15 |  | simpr2 1195 | . . . . . . . . . . 11
⊢ ((𝐴 ≠ 0 ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐵 ∈ ℝ) | 
| 16 | 1 | resum2sqgt0 48633 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 0 < 𝑄) | 
| 17 | 13, 14, 15, 16 | syl21anc 837 | . . . . . . . . . 10
⊢ ((𝐴 ≠ 0 ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 0 < 𝑄) | 
| 18 | 17 | ex 412 | . . . . . . . . 9
⊢ (𝐴 ≠ 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 <
𝑄)) | 
| 19 |  | simpr2 1195 | . . . . . . . . . . . 12
⊢ ((𝐵 ≠ 0 ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐵 ∈ ℝ) | 
| 20 |  | simpl 482 | . . . . . . . . . . . 12
⊢ ((𝐵 ≠ 0 ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐵 ≠ 0) | 
| 21 |  | simpr1 1194 | . . . . . . . . . . . 12
⊢ ((𝐵 ≠ 0 ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐴 ∈ ℝ) | 
| 22 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ ((𝐵↑2) + (𝐴↑2)) = ((𝐵↑2) + (𝐴↑2)) | 
| 23 | 22 | resum2sqgt0 48633 | . . . . . . . . . . . 12
⊢ (((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℝ) → 0 < ((𝐵↑2) + (𝐴↑2))) | 
| 24 | 19, 20, 21, 23 | syl21anc 837 | . . . . . . . . . . 11
⊢ ((𝐵 ≠ 0 ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 0 < ((𝐵↑2) + (𝐴↑2))) | 
| 25 |  | simp1 1136 | . . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈
ℝ) | 
| 26 | 25 | recnd 11290 | . . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈
ℂ) | 
| 27 | 26 | sqcld 14185 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴↑2) ∈
ℂ) | 
| 28 |  | simp2 1137 | . . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈
ℝ) | 
| 29 | 28 | recnd 11290 | . . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈
ℂ) | 
| 30 | 29 | sqcld 14185 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵↑2) ∈
ℂ) | 
| 31 | 27, 30 | addcomd 11464 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴↑2) + (𝐵↑2)) = ((𝐵↑2) + (𝐴↑2))) | 
| 32 | 31 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝐵 ≠ 0 ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐴↑2) + (𝐵↑2)) = ((𝐵↑2) + (𝐴↑2))) | 
| 33 | 1, 32 | eqtrid 2788 | . . . . . . . . . . 11
⊢ ((𝐵 ≠ 0 ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝑄 = ((𝐵↑2) + (𝐴↑2))) | 
| 34 | 24, 33 | breqtrrd 5170 | . . . . . . . . . 10
⊢ ((𝐵 ≠ 0 ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 0 < 𝑄) | 
| 35 | 34 | ex 412 | . . . . . . . . 9
⊢ (𝐵 ≠ 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 <
𝑄)) | 
| 36 | 18, 35 | jaoi 857 | . . . . . . . 8
⊢ ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 < 𝑄)) | 
| 37 | 36 | impcom 407 | . . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 0 < 𝑄) | 
| 38 | 37 | gt0ne0d 11828 | . . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 𝑄 ≠ 0) | 
| 39 | 38 | 3ad2ant1 1133 | . . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 ≠ 0) | 
| 40 |  | 2cnd 12345 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 2 ∈
ℂ) | 
| 41 |  | recn 11246 | . . . . . . . . . . 11
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) | 
| 42 | 41 | 3ad2ant2 1134 | . . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈
ℂ) | 
| 43 | 42 | adantr 480 | . . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 𝐵 ∈ ℂ) | 
| 44 | 43 | 3ad2ant1 1133 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℂ) | 
| 45 |  | recn 11246 | . . . . . . . . . . 11
⊢ (𝐶 ∈ ℝ → 𝐶 ∈
ℂ) | 
| 46 | 45 | 3ad2ant3 1135 | . . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈
ℂ) | 
| 47 | 46 | adantr 480 | . . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 𝐶 ∈ ℂ) | 
| 48 | 47 | 3ad2ant1 1133 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℂ) | 
| 49 | 44, 48 | mulcld 11282 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℂ) | 
| 50 | 40, 49 | mulcld 11282 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · (𝐵 · 𝐶)) ∈ ℂ) | 
| 51 | 50 | negcld 11608 | . . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → -(2 · (𝐵 · 𝐶)) ∈ ℂ) | 
| 52 | 48 | sqcld 14185 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐶↑2) ∈ ℂ) | 
| 53 |  | recn 11246 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) | 
| 54 | 53 | 3ad2ant1 1133 | . . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈
ℂ) | 
| 55 | 54 | adantr 480 | . . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → 𝐴 ∈ ℂ) | 
| 56 | 55 | 3ad2ant1 1133 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℂ) | 
| 57 | 56 | sqcld 14185 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴↑2) ∈ ℂ) | 
| 58 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) →
𝑅 ∈
ℝ+) | 
| 59 | 58 | rpcnd 13080 | . . . . . . . . 9
⊢ ((𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) →
𝑅 ∈
ℂ) | 
| 60 | 59 | 3ad2ant2 1134 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑅 ∈ ℂ) | 
| 61 | 60 | sqcld 14185 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑅↑2) ∈ ℂ) | 
| 62 | 57, 61 | mulcld 11282 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐴↑2) · (𝑅↑2)) ∈ ℂ) | 
| 63 | 52, 62 | subcld 11621 | . . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) ∈ ℂ) | 
| 64 |  | recn 11246 | . . . . . . 7
⊢ (𝑌 ∈ ℝ → 𝑌 ∈
ℂ) | 
| 65 | 64 | adantl 481 | . . . . . 6
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → 𝑌 ∈
ℂ) | 
| 66 | 65 | 3ad2ant3 1135 | . . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℂ) | 
| 67 |  | eqidd 2737 | . . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((-(2 ·
(𝐵 · 𝐶))↑2) − (4 ·
(𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))) = ((-(2 ·
(𝐵 · 𝐶))↑2) − (4 ·
(𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))))) | 
| 68 | 12, 39, 51, 63, 66, 67 | quad 26884 | . . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))) = 0 ↔ (𝑌 = ((--(2 · (𝐵 · 𝐶)) + (√‘((-(2 · (𝐵 · 𝐶))↑2) − (4 · (𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) / (2 · 𝑄)) ∨ 𝑌 = ((--(2 · (𝐵 · 𝐶)) − (√‘((-(2 ·
(𝐵 · 𝐶))↑2) − (4 ·
(𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) / (2 ·
𝑄))))) | 
| 69 | 53 | abscld 15476 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℝ →
(abs‘𝐴) ∈
ℝ) | 
| 70 | 69 | recnd 11290 | . . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ →
(abs‘𝐴) ∈
ℂ) | 
| 71 | 70 | 3ad2ant1 1133 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) →
(abs‘𝐴) ∈
ℂ) | 
| 72 | 71 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → (abs‘𝐴) ∈
ℂ) | 
| 73 | 72 | 3ad2ant1 1133 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (abs‘𝐴) ∈
ℂ) | 
| 74 |  | itsclc0yqsol.d | . . . . . . . . . . . . . 14
⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) | 
| 75 | 58 | rpred 13078 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) →
𝑅 ∈
ℝ) | 
| 76 | 75 | 3ad2ant2 1134 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑅 ∈ ℝ) | 
| 77 | 76 | resqcld 14166 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑅↑2) ∈ ℝ) | 
| 78 | 77, 11 | remulcld 11292 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑅↑2) · 𝑄) ∈ ℝ) | 
| 79 |  | simp1l3 1268 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℝ) | 
| 80 | 79 | resqcld 14166 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐶↑2) ∈ ℝ) | 
| 81 | 78, 80 | resubcld 11692 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) ∈ ℝ) | 
| 82 | 74, 81 | eqeltrid 2844 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐷 ∈ ℝ) | 
| 83 | 82 | recnd 11290 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐷 ∈ ℂ) | 
| 84 | 83 | sqrtcld 15477 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) →
(√‘𝐷) ∈
ℂ) | 
| 85 | 40, 73, 84 | mulassd 11285 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((2 ·
(abs‘𝐴)) ·
(√‘𝐷)) = (2
· ((abs‘𝐴)
· (√‘𝐷)))) | 
| 86 | 85 | oveq2d 7448 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((2 · (𝐵 · 𝐶)) + ((2 · (abs‘𝐴)) · (√‘𝐷))) = ((2 · (𝐵 · 𝐶)) + (2 · ((abs‘𝐴) · (√‘𝐷))))) | 
| 87 | 50 | negnegd 11612 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → --(2 ·
(𝐵 · 𝐶)) = (2 · (𝐵 · 𝐶))) | 
| 88 |  | simpl 482 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) | 
| 89 | 88 | 3ad2ant1 1133 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) | 
| 90 |  | simp2r 1200 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 0 ≤ 𝐷) | 
| 91 | 1, 2, 3, 74 | itsclc0yqsollem2 48689 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤
𝐷) →
(√‘((-(2 · (𝐵 · 𝐶))↑2) − (4 · (𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))))) = ((2 ·
(abs‘𝐴)) ·
(√‘𝐷))) | 
| 92 | 89, 76, 90, 91 | syl3anc 1372 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) →
(√‘((-(2 · (𝐵 · 𝐶))↑2) − (4 · (𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))))) = ((2 ·
(abs‘𝐴)) ·
(√‘𝐷))) | 
| 93 | 87, 92 | oveq12d 7450 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (--(2 ·
(𝐵 · 𝐶)) + (√‘((-(2
· (𝐵 · 𝐶))↑2) − (4 ·
(𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) = ((2 ·
(𝐵 · 𝐶)) + ((2 ·
(abs‘𝐴)) ·
(√‘𝐷)))) | 
| 94 | 73, 84 | mulcld 11282 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((abs‘𝐴) · (√‘𝐷)) ∈
ℂ) | 
| 95 | 40, 49, 94 | adddid 11286 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · ((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷)))) = ((2 · (𝐵 · 𝐶)) + (2 · ((abs‘𝐴) · (√‘𝐷))))) | 
| 96 | 86, 93, 95 | 3eqtr4d 2786 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (--(2 ·
(𝐵 · 𝐶)) + (√‘((-(2
· (𝐵 · 𝐶))↑2) − (4 ·
(𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) = (2 ·
((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))))) | 
| 97 | 96 | oveq1d 7447 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((--(2 ·
(𝐵 · 𝐶)) + (√‘((-(2
· (𝐵 · 𝐶))↑2) − (4 ·
(𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) / (2 ·
𝑄)) = ((2 · ((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷)))) / (2 · 𝑄))) | 
| 98 | 49, 94 | addcld 11281 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) ∈ ℂ) | 
| 99 |  | 2ne0 12371 | . . . . . . . . 9
⊢ 2 ≠
0 | 
| 100 | 99 | a1i 11 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 2 ≠
0) | 
| 101 | 98, 12, 40, 39, 100 | divcan5d 12070 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((2 ·
((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷)))) / (2 · 𝑄)) = (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄)) | 
| 102 | 97, 101 | eqtrd 2776 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((--(2 ·
(𝐵 · 𝐶)) + (√‘((-(2
· (𝐵 · 𝐶))↑2) − (4 ·
(𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) / (2 ·
𝑄)) = (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄)) | 
| 103 | 102 | eqeq2d 2747 | . . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 = ((--(2 · (𝐵 · 𝐶)) + (√‘((-(2 · (𝐵 · 𝐶))↑2) − (4 · (𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) / (2 · 𝑄)) ↔ 𝑌 = (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄))) | 
| 104 | 85 | oveq2d 7448 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((2 · (𝐵 · 𝐶)) − ((2 · (abs‘𝐴)) · (√‘𝐷))) = ((2 · (𝐵 · 𝐶)) − (2 · ((abs‘𝐴) · (√‘𝐷))))) | 
| 105 | 87, 92 | oveq12d 7450 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (--(2 ·
(𝐵 · 𝐶)) − (√‘((-(2
· (𝐵 · 𝐶))↑2) − (4 ·
(𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) = ((2 ·
(𝐵 · 𝐶)) − ((2 ·
(abs‘𝐴)) ·
(√‘𝐷)))) | 
| 106 | 40, 49, 94 | subdid 11720 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · ((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷)))) = ((2 · (𝐵 · 𝐶)) − (2 · ((abs‘𝐴) · (√‘𝐷))))) | 
| 107 | 104, 105,
106 | 3eqtr4d 2786 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (--(2 ·
(𝐵 · 𝐶)) − (√‘((-(2
· (𝐵 · 𝐶))↑2) − (4 ·
(𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) = (2 ·
((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))))) | 
| 108 | 107 | oveq1d 7447 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((--(2 ·
(𝐵 · 𝐶)) − (√‘((-(2
· (𝐵 · 𝐶))↑2) − (4 ·
(𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) / (2 ·
𝑄)) = ((2 · ((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷)))) / (2 · 𝑄))) | 
| 109 | 49, 94 | subcld 11621 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) ∈ ℂ) | 
| 110 | 109, 12, 40, 39, 100 | divcan5d 12070 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((2 ·
((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷)))) / (2 · 𝑄)) = (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄)) | 
| 111 | 108, 110 | eqtrd 2776 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((--(2 ·
(𝐵 · 𝐶)) − (√‘((-(2
· (𝐵 · 𝐶))↑2) − (4 ·
(𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) / (2 ·
𝑄)) = (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄)) | 
| 112 | 111 | eqeq2d 2747 | . . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 = ((--(2 · (𝐵 · 𝐶)) − (√‘((-(2 ·
(𝐵 · 𝐶))↑2) − (4 ·
(𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) / (2 ·
𝑄)) ↔ 𝑌 = (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄))) | 
| 113 | 103, 112 | orbi12d 918 | . . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑌 = ((--(2 · (𝐵 · 𝐶)) + (√‘((-(2 · (𝐵 · 𝐶))↑2) − (4 · (𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) / (2 · 𝑄)) ∨ 𝑌 = ((--(2 · (𝐵 · 𝐶)) − (√‘((-(2 ·
(𝐵 · 𝐶))↑2) − (4 ·
(𝑄 · ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))))))) / (2 ·
𝑄))) ↔ (𝑌 = (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄)))) | 
| 114 | 68, 113 | bitrd 279 | . . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))) = 0 ↔ (𝑌 = (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄)))) | 
| 115 |  | absid 15336 | . . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) → (abs‘𝐴) = 𝐴) | 
| 116 | 115 | ex 412 | . . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ → (0 ≤
𝐴 → (abs‘𝐴) = 𝐴)) | 
| 117 | 116 | 3ad2ant1 1133 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤
𝐴 → (abs‘𝐴) = 𝐴)) | 
| 118 | 117 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → (0 ≤ 𝐴 → (abs‘𝐴) = 𝐴)) | 
| 119 | 118 | 3ad2ant1 1133 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (0 ≤ 𝐴 → (abs‘𝐴) = 𝐴)) | 
| 120 | 119 | impcom 407 | . . . . . . . . . 10
⊢ ((0 ≤
𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (abs‘𝐴) = 𝐴) | 
| 121 | 120 | oveq1d 7447 | . . . . . . . . 9
⊢ ((0 ≤
𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((abs‘𝐴) · (√‘𝐷)) = (𝐴 · (√‘𝐷))) | 
| 122 | 121 | oveq2d 7448 | . . . . . . . 8
⊢ ((0 ≤
𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) = ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) | 
| 123 | 122 | oveq1d 7447 | . . . . . . 7
⊢ ((0 ≤
𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) | 
| 124 | 123 | eqeq2d 2747 | . . . . . 6
⊢ ((0 ≤
𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (𝑌 = (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄) ↔ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) | 
| 125 | 121 | oveq2d 7448 | . . . . . . . 8
⊢ ((0 ≤
𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) = ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) | 
| 126 | 125 | oveq1d 7447 | . . . . . . 7
⊢ ((0 ≤
𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) | 
| 127 | 126 | eqeq2d 2747 | . . . . . 6
⊢ ((0 ≤
𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (𝑌 = (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄) ↔ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) | 
| 128 | 124, 127 | orbi12d 918 | . . . . 5
⊢ ((0 ≤
𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((𝑌 = (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄)) ↔ (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)))) | 
| 129 |  | pm1.4 869 | . . . . 5
⊢ ((𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) | 
| 130 | 128, 129 | biimtrdi 253 | . . . 4
⊢ ((0 ≤
𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((𝑌 = (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) | 
| 131 | 49 | adantl 481 | . . . . . . . . . 10
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (𝐵 · 𝐶) ∈ ℂ) | 
| 132 | 94 | adantl 481 | . . . . . . . . . 10
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((abs‘𝐴) · (√‘𝐷)) ∈
ℂ) | 
| 133 | 131, 132 | subnegd 11628 | . . . . . . . . 9
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((𝐵 · 𝐶) − -((abs‘𝐴) · (√‘𝐷))) = ((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷)))) | 
| 134 | 73 | adantl 481 | . . . . . . . . . . . 12
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (abs‘𝐴) ∈
ℂ) | 
| 135 | 84 | adantl 481 | . . . . . . . . . . . 12
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) →
(√‘𝐷) ∈
ℂ) | 
| 136 | 134, 135 | mulneg1d 11717 | . . . . . . . . . . 11
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (-(abs‘𝐴) · (√‘𝐷)) = -((abs‘𝐴) · (√‘𝐷))) | 
| 137 | 89 | simp1d 1142 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℝ) | 
| 138 | 137 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → 𝐴 ∈ ℝ) | 
| 139 |  | id 22 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ) | 
| 140 |  | 0red 11265 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ ℝ → 0 ∈
ℝ) | 
| 141 | 139, 140 | ltnled 11409 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ ¬ 0 ≤
𝐴)) | 
| 142 |  | ltle 11350 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐴 < 0
→ 𝐴 ≤
0)) | 
| 143 | 140, 142 | mpdan 687 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ ℝ → (𝐴 < 0 → 𝐴 ≤ 0)) | 
| 144 | 141, 143 | sylbird 260 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ ℝ → (¬ 0
≤ 𝐴 → 𝐴 ≤ 0)) | 
| 145 | 144 | 3ad2ant1 1133 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ 0
≤ 𝐴 → 𝐴 ≤ 0)) | 
| 146 | 145 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) → (¬ 0 ≤ 𝐴 → 𝐴 ≤ 0)) | 
| 147 | 146 | 3ad2ant1 1133 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (¬ 0 ≤ 𝐴 → 𝐴 ≤ 0)) | 
| 148 | 147 | impcom 407 | . . . . . . . . . . . . . . 15
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → 𝐴 ≤ 0) | 
| 149 | 138, 148 | absnidd 15453 | . . . . . . . . . . . . . 14
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (abs‘𝐴) = -𝐴) | 
| 150 | 149 | negeqd 11503 | . . . . . . . . . . . . 13
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → -(abs‘𝐴) = --𝐴) | 
| 151 | 56 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → 𝐴 ∈ ℂ) | 
| 152 | 151 | negnegd 11612 | . . . . . . . . . . . . 13
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → --𝐴 = 𝐴) | 
| 153 | 150, 152 | eqtrd 2776 | . . . . . . . . . . . 12
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → -(abs‘𝐴) = 𝐴) | 
| 154 | 153 | oveq1d 7447 | . . . . . . . . . . 11
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (-(abs‘𝐴) · (√‘𝐷)) = (𝐴 · (√‘𝐷))) | 
| 155 | 136, 154 | eqtr3d 2778 | . . . . . . . . . 10
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → -((abs‘𝐴) · (√‘𝐷)) = (𝐴 · (√‘𝐷))) | 
| 156 | 155 | oveq2d 7448 | . . . . . . . . 9
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((𝐵 · 𝐶) − -((abs‘𝐴) · (√‘𝐷))) = ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) | 
| 157 | 133, 156 | eqtr3d 2778 | . . . . . . . 8
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) = ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) | 
| 158 | 157 | oveq1d 7447 | . . . . . . 7
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) | 
| 159 | 158 | eqeq2d 2747 | . . . . . 6
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (𝑌 = (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄) ↔ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) | 
| 160 | 131, 132 | negsubd 11627 | . . . . . . . . 9
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((𝐵 · 𝐶) + -((abs‘𝐴) · (√‘𝐷))) = ((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷)))) | 
| 161 | 155 | oveq2d 7448 | . . . . . . . . 9
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((𝐵 · 𝐶) + -((abs‘𝐴) · (√‘𝐷))) = ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) | 
| 162 | 160, 161 | eqtr3d 2778 | . . . . . . . 8
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) = ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) | 
| 163 | 162 | oveq1d 7447 | . . . . . . 7
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) | 
| 164 | 163 | eqeq2d 2747 | . . . . . 6
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (𝑌 = (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄) ↔ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) | 
| 165 | 159, 164 | orbi12d 918 | . . . . 5
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((𝑌 = (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄)) ↔ (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) | 
| 166 | 165 | biimpd 229 | . . . 4
⊢ ((¬ 0
≤ 𝐴 ∧ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((𝑌 = (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) | 
| 167 | 130, 166 | pm2.61ian 811 | . . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑌 = (((𝐵 · 𝐶) + ((abs‘𝐴) · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) − ((abs‘𝐴) · (√‘𝐷))) / 𝑄)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) | 
| 168 | 114, 167 | sylbid 240 | . 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))))) = 0 → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) | 
| 169 | 6, 168 | syld 47 | 1
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) |