| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imdistanri | Structured version Visualization version GIF version | ||
| Description: Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| imdistanri.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imdistanri | ⊢ ((𝜓 ∧ 𝜑) → (𝜒 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistanri.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | com12 32 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | 2 | impac 552 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝜒 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: tc2 9782 prmodvdslcmf 17085 monmat2matmon 22830 cnextcn 24075 umgredg 29155 crctcshwlkn0lem5 29834 tpr2rico 33911 bj-snsetex 36964 bj-restuni 37098 poimirlem26 37653 seqpo 37754 isdrngo2 37965 pm10.55 44388 2pm13.193VD 44923 |
| Copyright terms: Public domain | W3C validator |