![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imdistanri | Structured version Visualization version GIF version |
Description: Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
imdistanri.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imdistanri | ⊢ ((𝜓 ∧ 𝜑) → (𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistanri.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | com12 32 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | impac 552 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: tc2 9811 prmodvdslcmf 17094 monmat2matmon 22851 cnextcn 24096 umgredg 29173 crctcshwlkn0lem5 29847 tpr2rico 33858 bj-snsetex 36929 bj-restuni 37063 poimirlem26 37606 seqpo 37707 isdrngo2 37918 pm10.55 44338 2pm13.193VD 44874 |
Copyright terms: Public domain | W3C validator |