MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistanri Structured version   Visualization version   GIF version

Theorem imdistanri 566
Description: Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.)
Hypothesis
Ref Expression
imdistanri.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imdistanri ((𝜓𝜑) → (𝜒𝜑))

Proof of Theorem imdistanri
StepHypRef Expression
1 imdistanri.1 . . 3 (𝜑 → (𝜓𝜒))
21com12 32 . 2 (𝜓 → (𝜑𝜒))
32impac 549 1 ((𝜓𝜑) → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 386
This theorem is referenced by:  tc2  8868  prmodvdslcmf  16084  monmat2matmon  20957  cnextcn  22199  umgredg  26374  crctcshwlkn0lem5  27065  tpr2rico  30474  bj-snsetex  33443  bj-restuni  33543  poimirlem26  33924  seqpo  34030  isdrngo2  34244  pm10.55  39346  2pm13.193VD  39895
  Copyright terms: Public domain W3C validator