MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistanri Structured version   Visualization version   GIF version

Theorem imdistanri 569
Description: Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.)
Hypothesis
Ref Expression
imdistanri.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imdistanri ((𝜓𝜑) → (𝜒𝜑))

Proof of Theorem imdistanri
StepHypRef Expression
1 imdistanri.1 . . 3 (𝜑 → (𝜓𝜒))
21com12 32 . 2 (𝜓 → (𝜑𝜒))
32impac 552 1 ((𝜓𝜑) → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  tc2  9671  prmodvdslcmf  16994  monmat2matmon  22687  cnextcn  23930  umgredg  29041  crctcshwlkn0lem5  29717  tpr2rico  33875  bj-snsetex  36924  bj-restuni  37058  poimirlem26  37613  seqpo  37714  isdrngo2  37925  pm10.55  44331  2pm13.193VD  44865  gpgedg2iv  48031
  Copyright terms: Public domain W3C validator