Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imdistanri | Structured version Visualization version GIF version |
Description: Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
imdistanri.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imdistanri | ⊢ ((𝜓 ∧ 𝜑) → (𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistanri.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | com12 32 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | impac 556 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: tc2 9217 prmodvdslcmf 16438 monmat2matmon 21524 cnextcn 22767 umgredg 27030 crctcshwlkn0lem5 27699 tpr2rico 31383 bj-snsetex 34680 bj-restuni 34792 poimirlem26 35363 seqpo 35465 isdrngo2 35676 pm10.55 41446 2pm13.193VD 41982 |
Copyright terms: Public domain | W3C validator |