Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm13.14 Structured version   Visualization version   GIF version

Theorem pm13.14 42027
Description: Theorem *13.14 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.14 (([𝐴 / 𝑥]𝜑 ∧ ¬ 𝜑) → 𝑥𝐴)

Proof of Theorem pm13.14
StepHypRef Expression
1 sbceq1a 3727 . . . 4 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
21biimprcd 249 . . 3 ([𝐴 / 𝑥]𝜑 → (𝑥 = 𝐴𝜑))
32necon3bd 2957 . 2 ([𝐴 / 𝑥]𝜑 → (¬ 𝜑𝑥𝐴))
43imp 407 1 (([𝐴 / 𝑥]𝜑 ∧ ¬ 𝜑) → 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wne 2943  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-sbc 3717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator