Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm13.14 Structured version   Visualization version   GIF version

Theorem pm13.14 41916
Description: Theorem *13.14 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.14 (([𝐴 / 𝑥]𝜑 ∧ ¬ 𝜑) → 𝑥𝐴)

Proof of Theorem pm13.14
StepHypRef Expression
1 sbceq1a 3722 . . . 4 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
21biimprcd 249 . . 3 ([𝐴 / 𝑥]𝜑 → (𝑥 = 𝐴𝜑))
32necon3bd 2956 . 2 ([𝐴 / 𝑥]𝜑 → (¬ 𝜑𝑥𝐴))
43imp 406 1 (([𝐴 / 𝑥]𝜑 ∧ ¬ 𝜑) → 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wne 2942  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-sbc 3712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator