Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm13.14 | Structured version Visualization version GIF version |
Description: Theorem *13.14 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) |
Ref | Expression |
---|---|
pm13.14 | ⊢ (([𝐴 / 𝑥]𝜑 ∧ ¬ 𝜑) → 𝑥 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a 3727 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | 1 | biimprcd 249 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 → (𝑥 = 𝐴 → 𝜑)) |
3 | 2 | necon3bd 2957 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → (¬ 𝜑 → 𝑥 ≠ 𝐴)) |
4 | 3 | imp 407 | 1 ⊢ (([𝐴 / 𝑥]𝜑 ∧ ¬ 𝜑) → 𝑥 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ≠ wne 2943 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-sbc 3717 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |