Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2947 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
3 | 1, 2 | syl5bi 241 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: necon2ad 2958 nssne1 3981 nssne2 3982 disjne 4388 nbrne1 5093 nbrne2 5094 peano5 7740 peano5OLD 7741 oeeui 8433 domdifsn 8841 ac6sfi 9058 inf3lem2 9387 cnfcom3lem 9461 dfac9 9892 fin23lem21 10095 dedekindle 11139 zneo 12403 modirr 13662 sqrmo 14963 reusq0 15174 pc2dvds 16580 pcadd 16590 oddprmdvds 16604 4sqlem11 16656 latnlej 18174 sylow2blem3 19227 irredn0 19945 irredn1 19948 lssvneln0 20213 lspsnne2 20380 lspfixed 20390 lspindpi 20394 lsmcv 20403 lspsolv 20405 isnzr2 20534 coe1tmmul 21448 dfac14 22769 fbdmn0 22985 filufint 23071 flimfnfcls 23179 alexsubALTlem2 23199 evth 24122 cphsqrtcl2 24350 ovolicc2lem4 24684 lhop1lem 25177 lhop1 25178 lhop2 25179 lhop 25180 deg1add 25268 abelthlem2 25591 logcnlem2 25798 angpined 25980 asinneg 26036 dmgmaddn0 26172 lgsne0 26483 lgsqr 26499 lgsquadlem2 26529 lgsquadlem3 26530 axlowdimlem17 27326 spansncvi 30014 zarcmplem 31831 broutsideof2 34424 unblimceq0lem 34686 poimirlem28 35805 dvasin 35861 dvacos 35862 nninfnub 35909 dvrunz 36112 lsatcvatlem 37063 lkrlsp2 37117 opnlen0 37202 2llnne2N 37422 lnnat 37441 llnn0 37530 lplnn0N 37561 lplnllnneN 37570 llncvrlpln2 37571 llncvrlpln 37572 lvoln0N 37605 lplncvrlvol2 37629 lplncvrlvol 37630 dalempnes 37665 dalemqnet 37666 dalemcea 37674 dalem3 37678 cdlema1N 37805 cdlemb 37808 paddasslem5 37838 llnexchb2lem 37882 osumcllem4N 37973 pexmidlem1N 37984 lhp2lt 38015 lhp2atne 38048 lhp2at0ne 38050 4atexlemunv 38080 4atexlemex2 38085 trlne 38199 trlval4 38202 cdlemc4 38208 cdleme11dN 38276 cdleme11h 38280 cdlemednuN 38314 cdleme20j 38332 cdleme20k 38333 cdleme21at 38342 cdleme35f 38468 cdlemg11b 38656 dia2dimlem1 39078 dihmeetlem3N 39319 dihmeetlem15N 39335 dochsnnz 39464 dochexmidlem1 39474 dochexmidlem7 39480 mapdindp3 39736 fltne 40481 pellexlem1 40651 dfac21 40891 pm13.14 42027 uzlidlring 45487 suppdm 45851 |
Copyright terms: Public domain | W3C validator |