| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne 2929 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
| 2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 3 | 1, 2 | biimtrid 242 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
| 4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon2ad 2940 nssne1 4000 nssne2 4001 disjne 4408 nbrne1 5114 nbrne2 5115 peano5 7833 oeeui 8527 domdifsn 8984 ac6sfi 9189 inf3lem2 9544 cnfcom3lem 9618 dfac9 10050 fin23lem21 10252 1re 11134 dedekindle 11298 zneo 12577 modirr 13867 sqrmo 15176 reusq0 15390 pc2dvds 16809 pcadd 16819 oddprmdvds 16833 4sqlem11 16885 latnlej 18380 sylow2blem3 19519 irredn0 20326 irredn1 20329 isnzr2 20421 lssvneln0 20873 lspsnne2 21043 lspfixed 21053 lspindpi 21057 lsmcv 21066 lspsolv 21068 coe1tmmul 22179 dfac14 23521 fbdmn0 23737 filufint 23823 flimfnfcls 23931 alexsubALTlem2 23951 evth 24874 cphsqrtcl2 25102 ovolicc2lem4 25437 lhop1lem 25934 lhop1 25935 lhop2 25936 lhop 25937 deg1add 26024 abelthlem2 26358 logcnlem2 26568 angpined 26756 asinneg 26812 dmgmaddn0 26949 lgsne0 27262 lgsqr 27278 lgsquadlem2 27308 lgsquadlem3 27309 axlowdimlem17 28921 spansncvi 31614 argcj 32705 constrrecl 33738 zarcmplem 33850 broutsideof2 36098 unblimceq0lem 36482 poimirlem28 37630 dvasin 37686 dvacos 37687 nninfnub 37733 dvrunz 37936 lsatcvatlem 39030 lkrlsp2 39084 opnlen0 39169 2llnne2N 39390 lnnat 39409 llnn0 39498 lplnn0N 39529 lplnllnneN 39538 llncvrlpln2 39539 llncvrlpln 39540 lvoln0N 39573 lplncvrlvol2 39597 lplncvrlvol 39598 dalempnes 39633 dalemqnet 39634 dalemcea 39642 dalem3 39646 cdlema1N 39773 cdlemb 39776 paddasslem5 39806 llnexchb2lem 39850 osumcllem4N 39941 pexmidlem1N 39952 lhp2lt 39983 lhp2atne 40016 lhp2at0ne 40018 4atexlemunv 40048 4atexlemex2 40053 trlne 40167 trlval4 40170 cdlemc4 40176 cdleme11dN 40244 cdleme11h 40248 cdlemednuN 40282 cdleme20j 40300 cdleme20k 40301 cdleme21at 40310 cdleme35f 40436 cdlemg11b 40624 dia2dimlem1 41046 dihmeetlem3N 41287 dihmeetlem15N 41303 dochsnnz 41432 dochexmidlem1 41442 dochexmidlem7 41448 mapdindp3 41704 fltne 42620 pellexlem1 42805 dfac21 43042 pm13.14 44385 uzlidlring 48223 suppdm 48499 |
| Copyright terms: Public domain | W3C validator |