Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2947 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
3 | 1, 2 | syl5bi 241 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: necon2ad 2958 nssne1 3982 nssne2 3983 disjne 4390 nbrne1 5094 nbrne2 5095 peano5 7732 peano5OLD 7733 oeeui 8422 domdifsn 8830 ac6sfi 9047 inf3lem2 9376 cnfcom3lem 9450 dfac9 9881 fin23lem21 10084 dedekindle 11128 zneo 12392 modirr 13651 sqrmo 14952 reusq0 15163 pc2dvds 16569 pcadd 16579 oddprmdvds 16593 4sqlem11 16645 latnlej 18163 sylow2blem3 19216 irredn0 19934 irredn1 19937 lssvneln0 20202 lspsnne2 20369 lspfixed 20379 lspindpi 20383 lsmcv 20392 lspsolv 20394 isnzr2 20523 coe1tmmul 21437 dfac14 22758 fbdmn0 22974 filufint 23060 flimfnfcls 23168 alexsubALTlem2 23188 evth 24111 cphsqrtcl2 24339 ovolicc2lem4 24673 lhop1lem 25166 lhop1 25167 lhop2 25168 lhop 25169 deg1add 25257 abelthlem2 25580 logcnlem2 25787 angpined 25969 asinneg 26025 dmgmaddn0 26161 lgsne0 26472 lgsqr 26488 lgsquadlem2 26518 lgsquadlem3 26519 axlowdimlem17 27315 spansncvi 30001 zarcmplem 31818 broutsideof2 34411 unblimceq0lem 34673 poimirlem28 35792 dvasin 35848 dvacos 35849 nninfnub 35896 dvrunz 36099 lsatcvatlem 37050 lkrlsp2 37104 opnlen0 37189 2llnne2N 37409 lnnat 37428 llnn0 37517 lplnn0N 37548 lplnllnneN 37557 llncvrlpln2 37558 llncvrlpln 37559 lvoln0N 37592 lplncvrlvol2 37616 lplncvrlvol 37617 dalempnes 37652 dalemqnet 37653 dalemcea 37661 dalem3 37665 cdlema1N 37792 cdlemb 37795 paddasslem5 37825 llnexchb2lem 37869 osumcllem4N 37960 pexmidlem1N 37971 lhp2lt 38002 lhp2atne 38035 lhp2at0ne 38037 4atexlemunv 38067 4atexlemex2 38072 trlne 38186 trlval4 38189 cdlemc4 38195 cdleme11dN 38263 cdleme11h 38267 cdlemednuN 38301 cdleme20j 38319 cdleme20k 38320 cdleme21at 38329 cdleme35f 38455 cdlemg11b 38643 dia2dimlem1 39065 dihmeetlem3N 39306 dihmeetlem15N 39322 dochsnnz 39451 dochexmidlem1 39461 dochexmidlem7 39467 mapdindp3 39723 fltne 40468 pellexlem1 40638 dfac21 40878 pm13.14 41987 uzlidlring 45444 suppdm 45808 |
Copyright terms: Public domain | W3C validator |