| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne 2936 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
| 2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 3 | 1, 2 | biimtrid 242 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
| 4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: necon2ad 2947 nssne1 4021 nssne2 4022 disjne 4430 nbrne1 5138 nbrne2 5139 peano5 7889 oeeui 8614 domdifsn 9068 ac6sfi 9292 inf3lem2 9643 cnfcom3lem 9717 dfac9 10151 fin23lem21 10353 dedekindle 11399 zneo 12676 modirr 13960 sqrmo 15270 reusq0 15481 pc2dvds 16899 pcadd 16909 oddprmdvds 16923 4sqlem11 16975 latnlej 18466 sylow2blem3 19603 irredn0 20383 irredn1 20386 isnzr2 20478 lssvneln0 20909 lspsnne2 21079 lspfixed 21089 lspindpi 21093 lsmcv 21102 lspsolv 21104 coe1tmmul 22214 dfac14 23556 fbdmn0 23772 filufint 23858 flimfnfcls 23966 alexsubALTlem2 23986 evth 24909 cphsqrtcl2 25138 ovolicc2lem4 25473 lhop1lem 25970 lhop1 25971 lhop2 25972 lhop 25973 deg1add 26060 abelthlem2 26394 logcnlem2 26604 angpined 26792 asinneg 26848 dmgmaddn0 26985 lgsne0 27298 lgsqr 27314 lgsquadlem2 27344 lgsquadlem3 27345 axlowdimlem17 28937 spansncvi 31633 argcj 32726 constrrecl 33803 zarcmplem 33912 broutsideof2 36140 unblimceq0lem 36524 poimirlem28 37672 dvasin 37728 dvacos 37729 nninfnub 37775 dvrunz 37978 lsatcvatlem 39067 lkrlsp2 39121 opnlen0 39206 2llnne2N 39427 lnnat 39446 llnn0 39535 lplnn0N 39566 lplnllnneN 39575 llncvrlpln2 39576 llncvrlpln 39577 lvoln0N 39610 lplncvrlvol2 39634 lplncvrlvol 39635 dalempnes 39670 dalemqnet 39671 dalemcea 39679 dalem3 39683 cdlema1N 39810 cdlemb 39813 paddasslem5 39843 llnexchb2lem 39887 osumcllem4N 39978 pexmidlem1N 39989 lhp2lt 40020 lhp2atne 40053 lhp2at0ne 40055 4atexlemunv 40085 4atexlemex2 40090 trlne 40204 trlval4 40207 cdlemc4 40213 cdleme11dN 40281 cdleme11h 40285 cdlemednuN 40319 cdleme20j 40337 cdleme20k 40338 cdleme21at 40347 cdleme35f 40473 cdlemg11b 40661 dia2dimlem1 41083 dihmeetlem3N 41324 dihmeetlem15N 41340 dochsnnz 41469 dochexmidlem1 41479 dochexmidlem7 41485 mapdindp3 41741 fltne 42667 pellexlem1 42852 dfac21 43090 pm13.14 44433 uzlidlring 48210 suppdm 48486 |
| Copyright terms: Public domain | W3C validator |