![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2950 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
3 | 1, 2 | biimtrid 242 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon2ad 2961 nssne1 4071 nssne2 4072 disjne 4478 nbrne1 5185 nbrne2 5186 peano5 7932 peano5OLD 7933 oeeui 8658 domdifsn 9120 ac6sfi 9348 inf3lem2 9698 cnfcom3lem 9772 dfac9 10206 fin23lem21 10408 dedekindle 11454 zneo 12726 modirr 13993 sqrmo 15300 reusq0 15511 pc2dvds 16926 pcadd 16936 oddprmdvds 16950 4sqlem11 17002 latnlej 18526 sylow2blem3 19664 irredn0 20449 irredn1 20452 isnzr2 20544 lssvneln0 20973 lspsnne2 21143 lspfixed 21153 lspindpi 21157 lsmcv 21166 lspsolv 21168 coe1tmmul 22301 dfac14 23647 fbdmn0 23863 filufint 23949 flimfnfcls 24057 alexsubALTlem2 24077 evth 25010 cphsqrtcl2 25239 ovolicc2lem4 25574 lhop1lem 26072 lhop1 26073 lhop2 26074 lhop 26075 deg1add 26162 abelthlem2 26494 logcnlem2 26703 angpined 26891 asinneg 26947 dmgmaddn0 27084 lgsne0 27397 lgsqr 27413 lgsquadlem2 27443 lgsquadlem3 27444 axlowdimlem17 28991 spansncvi 31684 zarcmplem 33827 broutsideof2 36086 unblimceq0lem 36472 poimirlem28 37608 dvasin 37664 dvacos 37665 nninfnub 37711 dvrunz 37914 lsatcvatlem 39005 lkrlsp2 39059 opnlen0 39144 2llnne2N 39365 lnnat 39384 llnn0 39473 lplnn0N 39504 lplnllnneN 39513 llncvrlpln2 39514 llncvrlpln 39515 lvoln0N 39548 lplncvrlvol2 39572 lplncvrlvol 39573 dalempnes 39608 dalemqnet 39609 dalemcea 39617 dalem3 39621 cdlema1N 39748 cdlemb 39751 paddasslem5 39781 llnexchb2lem 39825 osumcllem4N 39916 pexmidlem1N 39927 lhp2lt 39958 lhp2atne 39991 lhp2at0ne 39993 4atexlemunv 40023 4atexlemex2 40028 trlne 40142 trlval4 40145 cdlemc4 40151 cdleme11dN 40219 cdleme11h 40223 cdlemednuN 40257 cdleme20j 40275 cdleme20k 40276 cdleme21at 40285 cdleme35f 40411 cdlemg11b 40599 dia2dimlem1 41021 dihmeetlem3N 41262 dihmeetlem15N 41278 dochsnnz 41407 dochexmidlem1 41417 dochexmidlem7 41423 mapdindp3 41679 fltne 42599 pellexlem1 42785 dfac21 43023 pm13.14 44378 uzlidlring 47958 suppdm 48239 |
Copyright terms: Public domain | W3C validator |