Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2946 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
3 | 1, 2 | syl5bi 241 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon2ad 2957 nssne1 3977 nssne2 3978 disjne 4385 nbrne1 5089 nbrne2 5090 peano5 7714 peano5OLD 7715 oeeui 8395 domdifsn 8795 ac6sfi 8988 inf3lem2 9317 cnfcom3lem 9391 dfac9 9823 fin23lem21 10026 dedekindle 11069 zneo 12333 modirr 13590 sqrmo 14891 reusq0 15102 pc2dvds 16508 pcadd 16518 oddprmdvds 16532 4sqlem11 16584 latnlej 18089 sylow2blem3 19142 irredn0 19860 irredn1 19863 lssvneln0 20128 lspsnne2 20295 lspfixed 20305 lspindpi 20309 lsmcv 20318 lspsolv 20320 isnzr2 20447 coe1tmmul 21358 dfac14 22677 fbdmn0 22893 filufint 22979 flimfnfcls 23087 alexsubALTlem2 23107 evth 24028 cphsqrtcl2 24255 ovolicc2lem4 24589 lhop1lem 25082 lhop1 25083 lhop2 25084 lhop 25085 deg1add 25173 abelthlem2 25496 logcnlem2 25703 angpined 25885 asinneg 25941 dmgmaddn0 26077 lgsne0 26388 lgsqr 26404 lgsquadlem2 26434 lgsquadlem3 26435 axlowdimlem17 27229 spansncvi 29915 zarcmplem 31733 broutsideof2 34351 unblimceq0lem 34613 poimirlem28 35732 dvasin 35788 dvacos 35789 nninfnub 35836 dvrunz 36039 lsatcvatlem 36990 lkrlsp2 37044 opnlen0 37129 2llnne2N 37349 lnnat 37368 llnn0 37457 lplnn0N 37488 lplnllnneN 37497 llncvrlpln2 37498 llncvrlpln 37499 lvoln0N 37532 lplncvrlvol2 37556 lplncvrlvol 37557 dalempnes 37592 dalemqnet 37593 dalemcea 37601 dalem3 37605 cdlema1N 37732 cdlemb 37735 paddasslem5 37765 llnexchb2lem 37809 osumcllem4N 37900 pexmidlem1N 37911 lhp2lt 37942 lhp2atne 37975 lhp2at0ne 37977 4atexlemunv 38007 4atexlemex2 38012 trlne 38126 trlval4 38129 cdlemc4 38135 cdleme11dN 38203 cdleme11h 38207 cdlemednuN 38241 cdleme20j 38259 cdleme20k 38260 cdleme21at 38269 cdleme35f 38395 cdlemg11b 38583 dia2dimlem1 39005 dihmeetlem3N 39246 dihmeetlem15N 39262 dochsnnz 39391 dochexmidlem1 39401 dochexmidlem7 39407 mapdindp3 39663 fltne 40397 pellexlem1 40567 dfac21 40807 pm13.14 41916 uzlidlring 45375 suppdm 45739 |
Copyright terms: Public domain | W3C validator |