| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne 2933 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
| 2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 3 | 1, 2 | biimtrid 242 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
| 4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: necon2ad 2944 nssne1 3993 nssne2 3994 disjne 4404 nbrne1 5112 nbrne2 5113 peano5 7829 oeeui 8523 domdifsn 8980 ac6sfi 9175 inf3lem2 9526 cnfcom3lem 9600 dfac9 10035 fin23lem21 10237 1re 11119 dedekindle 11284 zneo 12562 modirr 13851 sqrmo 15160 reusq0 15374 pc2dvds 16793 pcadd 16803 oddprmdvds 16817 4sqlem11 16869 latnlej 18364 sylow2blem3 19536 irredn0 20343 irredn1 20346 isnzr2 20435 lssvneln0 20887 lspsnne2 21057 lspfixed 21067 lspindpi 21071 lsmcv 21080 lspsolv 21082 coe1tmmul 22192 dfac14 23534 fbdmn0 23750 filufint 23836 flimfnfcls 23944 alexsubALTlem2 23964 evth 24886 cphsqrtcl2 25114 ovolicc2lem4 25449 lhop1lem 25946 lhop1 25947 lhop2 25948 lhop 25949 deg1add 26036 abelthlem2 26370 logcnlem2 26580 angpined 26768 asinneg 26824 dmgmaddn0 26961 lgsne0 27274 lgsqr 27290 lgsquadlem2 27320 lgsquadlem3 27321 axlowdimlem17 28938 spansncvi 31634 argcj 32736 constrrecl 33803 zarcmplem 33915 broutsideof2 36187 unblimceq0lem 36571 poimirlem28 37709 dvasin 37765 dvacos 37766 nninfnub 37812 dvrunz 38015 lsatcvatlem 39169 lkrlsp2 39223 opnlen0 39308 2llnne2N 39528 lnnat 39547 llnn0 39636 lplnn0N 39667 lplnllnneN 39676 llncvrlpln2 39677 llncvrlpln 39678 lvoln0N 39711 lplncvrlvol2 39735 lplncvrlvol 39736 dalempnes 39771 dalemqnet 39772 dalemcea 39780 dalem3 39784 cdlema1N 39911 cdlemb 39914 paddasslem5 39944 llnexchb2lem 39988 osumcllem4N 40079 pexmidlem1N 40090 lhp2lt 40121 lhp2atne 40154 lhp2at0ne 40156 4atexlemunv 40186 4atexlemex2 40191 trlne 40305 trlval4 40308 cdlemc4 40314 cdleme11dN 40382 cdleme11h 40386 cdlemednuN 40420 cdleme20j 40438 cdleme20k 40439 cdleme21at 40448 cdleme35f 40574 cdlemg11b 40762 dia2dimlem1 41184 dihmeetlem3N 41425 dihmeetlem15N 41441 dochsnnz 41570 dochexmidlem1 41580 dochexmidlem7 41586 mapdindp3 41842 fltne 42763 pellexlem1 42947 dfac21 43184 pm13.14 44527 uzlidlring 48360 suppdm 48636 |
| Copyright terms: Public domain | W3C validator |