| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne 2929 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
| 2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 3 | 1, 2 | biimtrid 242 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
| 4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon2ad 2940 nssne1 4009 nssne2 4010 disjne 4418 nbrne1 5126 nbrne2 5127 peano5 7869 oeeui 8566 domdifsn 9024 ac6sfi 9231 inf3lem2 9582 cnfcom3lem 9656 dfac9 10090 fin23lem21 10292 1re 11174 dedekindle 11338 zneo 12617 modirr 13907 sqrmo 15217 reusq0 15431 pc2dvds 16850 pcadd 16860 oddprmdvds 16874 4sqlem11 16926 latnlej 18415 sylow2blem3 19552 irredn0 20332 irredn1 20335 isnzr2 20427 lssvneln0 20858 lspsnne2 21028 lspfixed 21038 lspindpi 21042 lsmcv 21051 lspsolv 21053 coe1tmmul 22163 dfac14 23505 fbdmn0 23721 filufint 23807 flimfnfcls 23915 alexsubALTlem2 23935 evth 24858 cphsqrtcl2 25086 ovolicc2lem4 25421 lhop1lem 25918 lhop1 25919 lhop2 25920 lhop 25921 deg1add 26008 abelthlem2 26342 logcnlem2 26552 angpined 26740 asinneg 26796 dmgmaddn0 26933 lgsne0 27246 lgsqr 27262 lgsquadlem2 27292 lgsquadlem3 27293 axlowdimlem17 28885 spansncvi 31581 argcj 32672 constrrecl 33759 zarcmplem 33871 broutsideof2 36110 unblimceq0lem 36494 poimirlem28 37642 dvasin 37698 dvacos 37699 nninfnub 37745 dvrunz 37948 lsatcvatlem 39042 lkrlsp2 39096 opnlen0 39181 2llnne2N 39402 lnnat 39421 llnn0 39510 lplnn0N 39541 lplnllnneN 39550 llncvrlpln2 39551 llncvrlpln 39552 lvoln0N 39585 lplncvrlvol2 39609 lplncvrlvol 39610 dalempnes 39645 dalemqnet 39646 dalemcea 39654 dalem3 39658 cdlema1N 39785 cdlemb 39788 paddasslem5 39818 llnexchb2lem 39862 osumcllem4N 39953 pexmidlem1N 39964 lhp2lt 39995 lhp2atne 40028 lhp2at0ne 40030 4atexlemunv 40060 4atexlemex2 40065 trlne 40179 trlval4 40182 cdlemc4 40188 cdleme11dN 40256 cdleme11h 40260 cdlemednuN 40294 cdleme20j 40312 cdleme20k 40313 cdleme21at 40322 cdleme35f 40448 cdlemg11b 40636 dia2dimlem1 41058 dihmeetlem3N 41299 dihmeetlem15N 41315 dochsnnz 41444 dochexmidlem1 41454 dochexmidlem7 41460 mapdindp3 41716 fltne 42632 pellexlem1 42817 dfac21 43055 pm13.14 44398 uzlidlring 48223 suppdm 48499 |
| Copyright terms: Public domain | W3C validator |