![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2941 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
3 | 1, 2 | biimtrid 242 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1536 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2938 |
This theorem is referenced by: necon2ad 2952 nssne1 4057 nssne2 4058 disjne 4460 nbrne1 5166 nbrne2 5167 peano5 7915 oeeui 8638 domdifsn 9092 ac6sfi 9317 inf3lem2 9666 cnfcom3lem 9740 dfac9 10174 fin23lem21 10376 dedekindle 11422 zneo 12698 modirr 13979 sqrmo 15286 reusq0 15497 pc2dvds 16912 pcadd 16922 oddprmdvds 16936 4sqlem11 16988 latnlej 18513 sylow2blem3 19654 irredn0 20439 irredn1 20442 isnzr2 20534 lssvneln0 20967 lspsnne2 21137 lspfixed 21147 lspindpi 21151 lsmcv 21160 lspsolv 21162 coe1tmmul 22295 dfac14 23641 fbdmn0 23857 filufint 23943 flimfnfcls 24051 alexsubALTlem2 24071 evth 25004 cphsqrtcl2 25233 ovolicc2lem4 25568 lhop1lem 26066 lhop1 26067 lhop2 26068 lhop 26069 deg1add 26156 abelthlem2 26490 logcnlem2 26699 angpined 26887 asinneg 26943 dmgmaddn0 27080 lgsne0 27393 lgsqr 27409 lgsquadlem2 27439 lgsquadlem3 27440 axlowdimlem17 28987 spansncvi 31680 zarcmplem 33841 broutsideof2 36103 unblimceq0lem 36488 poimirlem28 37634 dvasin 37690 dvacos 37691 nninfnub 37737 dvrunz 37940 lsatcvatlem 39030 lkrlsp2 39084 opnlen0 39169 2llnne2N 39390 lnnat 39409 llnn0 39498 lplnn0N 39529 lplnllnneN 39538 llncvrlpln2 39539 llncvrlpln 39540 lvoln0N 39573 lplncvrlvol2 39597 lplncvrlvol 39598 dalempnes 39633 dalemqnet 39634 dalemcea 39642 dalem3 39646 cdlema1N 39773 cdlemb 39776 paddasslem5 39806 llnexchb2lem 39850 osumcllem4N 39941 pexmidlem1N 39952 lhp2lt 39983 lhp2atne 40016 lhp2at0ne 40018 4atexlemunv 40048 4atexlemex2 40053 trlne 40167 trlval4 40170 cdlemc4 40176 cdleme11dN 40244 cdleme11h 40248 cdlemednuN 40282 cdleme20j 40300 cdleme20k 40301 cdleme21at 40310 cdleme35f 40436 cdlemg11b 40624 dia2dimlem1 41046 dihmeetlem3N 41287 dihmeetlem15N 41303 dochsnnz 41432 dochexmidlem1 41442 dochexmidlem7 41448 mapdindp3 41704 fltne 42630 pellexlem1 42816 dfac21 43054 pm13.14 44404 uzlidlring 48078 suppdm 48355 |
Copyright terms: Public domain | W3C validator |