| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne 2930 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
| 2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 3 | 1, 2 | biimtrid 242 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
| 4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon2ad 2941 nssne1 4012 nssne2 4013 disjne 4421 nbrne1 5129 nbrne2 5130 peano5 7872 oeeui 8569 domdifsn 9028 ac6sfi 9238 inf3lem2 9589 cnfcom3lem 9663 dfac9 10097 fin23lem21 10299 1re 11181 dedekindle 11345 zneo 12624 modirr 13914 sqrmo 15224 reusq0 15438 pc2dvds 16857 pcadd 16867 oddprmdvds 16881 4sqlem11 16933 latnlej 18422 sylow2blem3 19559 irredn0 20339 irredn1 20342 isnzr2 20434 lssvneln0 20865 lspsnne2 21035 lspfixed 21045 lspindpi 21049 lsmcv 21058 lspsolv 21060 coe1tmmul 22170 dfac14 23512 fbdmn0 23728 filufint 23814 flimfnfcls 23922 alexsubALTlem2 23942 evth 24865 cphsqrtcl2 25093 ovolicc2lem4 25428 lhop1lem 25925 lhop1 25926 lhop2 25927 lhop 25928 deg1add 26015 abelthlem2 26349 logcnlem2 26559 angpined 26747 asinneg 26803 dmgmaddn0 26940 lgsne0 27253 lgsqr 27269 lgsquadlem2 27299 lgsquadlem3 27300 axlowdimlem17 28892 spansncvi 31588 argcj 32679 constrrecl 33766 zarcmplem 33878 broutsideof2 36117 unblimceq0lem 36501 poimirlem28 37649 dvasin 37705 dvacos 37706 nninfnub 37752 dvrunz 37955 lsatcvatlem 39049 lkrlsp2 39103 opnlen0 39188 2llnne2N 39409 lnnat 39428 llnn0 39517 lplnn0N 39548 lplnllnneN 39557 llncvrlpln2 39558 llncvrlpln 39559 lvoln0N 39592 lplncvrlvol2 39616 lplncvrlvol 39617 dalempnes 39652 dalemqnet 39653 dalemcea 39661 dalem3 39665 cdlema1N 39792 cdlemb 39795 paddasslem5 39825 llnexchb2lem 39869 osumcllem4N 39960 pexmidlem1N 39971 lhp2lt 40002 lhp2atne 40035 lhp2at0ne 40037 4atexlemunv 40067 4atexlemex2 40072 trlne 40186 trlval4 40189 cdlemc4 40195 cdleme11dN 40263 cdleme11h 40267 cdlemednuN 40301 cdleme20j 40319 cdleme20k 40320 cdleme21at 40329 cdleme35f 40455 cdlemg11b 40643 dia2dimlem1 41065 dihmeetlem3N 41306 dihmeetlem15N 41322 dochsnnz 41451 dochexmidlem1 41461 dochexmidlem7 41467 mapdindp3 41723 fltne 42639 pellexlem1 42824 dfac21 43062 pm13.14 44405 uzlidlring 48227 suppdm 48503 |
| Copyright terms: Public domain | W3C validator |