![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2944 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
3 | 1, 2 | biimtrid 241 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: necon2ad 2955 nssne1 4044 nssne2 4045 disjne 4454 nbrne1 5167 nbrne2 5168 peano5 7886 peano5OLD 7887 oeeui 8604 domdifsn 9056 ac6sfi 9289 inf3lem2 9626 cnfcom3lem 9700 dfac9 10133 fin23lem21 10336 dedekindle 11382 zneo 12649 modirr 13911 sqrmo 15202 reusq0 15413 pc2dvds 16816 pcadd 16826 oddprmdvds 16840 4sqlem11 16892 latnlej 18413 sylow2blem3 19531 irredn0 20314 irredn1 20317 isnzr2 20409 lssvneln0 20706 lspsnne2 20876 lspfixed 20886 lspindpi 20890 lsmcv 20899 lspsolv 20901 coe1tmmul 22019 dfac14 23342 fbdmn0 23558 filufint 23644 flimfnfcls 23752 alexsubALTlem2 23772 evth 24699 cphsqrtcl2 24927 ovolicc2lem4 25261 lhop1lem 25754 lhop1 25755 lhop2 25756 lhop 25757 deg1add 25845 abelthlem2 26168 logcnlem2 26375 angpined 26559 asinneg 26615 dmgmaddn0 26751 lgsne0 27062 lgsqr 27078 lgsquadlem2 27108 lgsquadlem3 27109 axlowdimlem17 28471 spansncvi 31160 zarcmplem 33147 broutsideof2 35386 unblimceq0lem 35685 poimirlem28 36819 dvasin 36875 dvacos 36876 nninfnub 36922 dvrunz 37125 lsatcvatlem 38222 lkrlsp2 38276 opnlen0 38361 2llnne2N 38582 lnnat 38601 llnn0 38690 lplnn0N 38721 lplnllnneN 38730 llncvrlpln2 38731 llncvrlpln 38732 lvoln0N 38765 lplncvrlvol2 38789 lplncvrlvol 38790 dalempnes 38825 dalemqnet 38826 dalemcea 38834 dalem3 38838 cdlema1N 38965 cdlemb 38968 paddasslem5 38998 llnexchb2lem 39042 osumcllem4N 39133 pexmidlem1N 39144 lhp2lt 39175 lhp2atne 39208 lhp2at0ne 39210 4atexlemunv 39240 4atexlemex2 39245 trlne 39359 trlval4 39362 cdlemc4 39368 cdleme11dN 39436 cdleme11h 39440 cdlemednuN 39474 cdleme20j 39492 cdleme20k 39493 cdleme21at 39502 cdleme35f 39628 cdlemg11b 39816 dia2dimlem1 40238 dihmeetlem3N 40479 dihmeetlem15N 40495 dochsnnz 40624 dochexmidlem1 40634 dochexmidlem7 40640 mapdindp3 40896 fltne 41688 pellexlem1 41869 dfac21 42110 pm13.14 43470 uzlidlring 46916 suppdm 47279 |
Copyright terms: Public domain | W3C validator |