| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bd | Structured version Visualization version GIF version | ||
| Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon3bd.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| necon3bd | ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne 2932 | . . 3 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
| 2 | necon3bd.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 3 | 1, 2 | biimtrid 242 | . 2 ⊢ (𝜑 → (¬ 𝐴 ≠ 𝐵 → 𝜓)) |
| 4 | 3 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necon2ad 2943 nssne1 3997 nssne2 3998 disjne 4405 nbrne1 5110 nbrne2 5111 peano5 7823 oeeui 8517 domdifsn 8973 ac6sfi 9168 inf3lem2 9519 cnfcom3lem 9593 dfac9 10028 fin23lem21 10230 1re 11112 dedekindle 11277 zneo 12556 modirr 13849 sqrmo 15158 reusq0 15372 pc2dvds 16791 pcadd 16801 oddprmdvds 16815 4sqlem11 16867 latnlej 18362 sylow2blem3 19535 irredn0 20342 irredn1 20345 isnzr2 20434 lssvneln0 20886 lspsnne2 21056 lspfixed 21066 lspindpi 21070 lsmcv 21079 lspsolv 21081 coe1tmmul 22192 dfac14 23534 fbdmn0 23750 filufint 23836 flimfnfcls 23944 alexsubALTlem2 23964 evth 24886 cphsqrtcl2 25114 ovolicc2lem4 25449 lhop1lem 25946 lhop1 25947 lhop2 25948 lhop 25949 deg1add 26036 abelthlem2 26370 logcnlem2 26580 angpined 26768 asinneg 26824 dmgmaddn0 26961 lgsne0 27274 lgsqr 27290 lgsquadlem2 27320 lgsquadlem3 27321 axlowdimlem17 28937 spansncvi 31630 argcj 32730 constrrecl 33780 zarcmplem 33892 broutsideof2 36162 unblimceq0lem 36546 poimirlem28 37694 dvasin 37750 dvacos 37751 nninfnub 37797 dvrunz 38000 lsatcvatlem 39094 lkrlsp2 39148 opnlen0 39233 2llnne2N 39453 lnnat 39472 llnn0 39561 lplnn0N 39592 lplnllnneN 39601 llncvrlpln2 39602 llncvrlpln 39603 lvoln0N 39636 lplncvrlvol2 39660 lplncvrlvol 39661 dalempnes 39696 dalemqnet 39697 dalemcea 39705 dalem3 39709 cdlema1N 39836 cdlemb 39839 paddasslem5 39869 llnexchb2lem 39913 osumcllem4N 40004 pexmidlem1N 40015 lhp2lt 40046 lhp2atne 40079 lhp2at0ne 40081 4atexlemunv 40111 4atexlemex2 40116 trlne 40230 trlval4 40233 cdlemc4 40239 cdleme11dN 40307 cdleme11h 40311 cdlemednuN 40345 cdleme20j 40363 cdleme20k 40364 cdleme21at 40373 cdleme35f 40499 cdlemg11b 40687 dia2dimlem1 41109 dihmeetlem3N 41350 dihmeetlem15N 41366 dochsnnz 41495 dochexmidlem1 41505 dochexmidlem7 41511 mapdindp3 41767 fltne 42683 pellexlem1 42868 dfac21 43105 pm13.14 44448 uzlidlring 48272 suppdm 48548 |
| Copyright terms: Public domain | W3C validator |