Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm13.192 Structured version   Visualization version   GIF version

Theorem pm13.192 41998
Description: Theorem *13.192 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.)
Assertion
Ref Expression
pm13.192 (∃𝑦(∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem pm13.192
StepHypRef Expression
1 biimpr 219 . . . . . . 7 ((𝑥 = 𝐴𝑥 = 𝑦) → (𝑥 = 𝑦𝑥 = 𝐴))
21alimi 1814 . . . . . 6 (∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦𝑥 = 𝐴))
3 eqeq1 2742 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
43equsalvw 2007 . . . . . 6 (∀𝑥(𝑥 = 𝑦𝑥 = 𝐴) ↔ 𝑦 = 𝐴)
52, 4sylib 217 . . . . 5 (∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) → 𝑦 = 𝐴)
6 eqeq2 2750 . . . . . . 7 (𝐴 = 𝑦 → (𝑥 = 𝐴𝑥 = 𝑦))
76eqcoms 2746 . . . . . 6 (𝑦 = 𝐴 → (𝑥 = 𝐴𝑥 = 𝑦))
87alrimiv 1930 . . . . 5 (𝑦 = 𝐴 → ∀𝑥(𝑥 = 𝐴𝑥 = 𝑦))
95, 8impbii 208 . . . 4 (∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) ↔ 𝑦 = 𝐴)
109anbi1i 624 . . 3 ((∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) ∧ 𝜑) ↔ (𝑦 = 𝐴𝜑))
1110exbii 1850 . 2 (∃𝑦(∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝐴𝜑))
12 sbc5 3745 . 2 ([𝐴 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝐴𝜑))
1311, 12bitr4i 277 1 (∃𝑦(∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  [wsbc 3717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sbc 3718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator