![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm13.192 | Structured version Visualization version GIF version |
Description: Theorem *13.192 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.) |
Ref | Expression |
---|---|
pm13.192 | ⊢ (∃𝑦(∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpr 219 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝑥 = 𝐴)) | |
2 | 1 | alimi 1806 | . . . . . 6 ⊢ (∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝐴)) |
3 | eqeq1 2730 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
4 | 3 | equsalvw 2000 | . . . . . 6 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝐴) ↔ 𝑦 = 𝐴) |
5 | 2, 4 | sylib 217 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) → 𝑦 = 𝐴) |
6 | eqeq2 2738 | . . . . . . 7 ⊢ (𝐴 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑥 = 𝑦)) | |
7 | 6 | eqcoms 2734 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝐴 ↔ 𝑥 = 𝑦)) |
8 | 7 | alrimiv 1923 | . . . . 5 ⊢ (𝑦 = 𝐴 → ∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦)) |
9 | 5, 8 | impbii 208 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ↔ 𝑦 = 𝐴) |
10 | 9 | anbi1i 622 | . . 3 ⊢ ((∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ∧ 𝜑) ↔ (𝑦 = 𝐴 ∧ 𝜑)) |
11 | 10 | exbii 1843 | . 2 ⊢ (∃𝑦(∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
12 | sbc5 3804 | . 2 ⊢ ([𝐴 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) | |
13 | 11, 12 | bitr4i 277 | 1 ⊢ (∃𝑦(∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1532 = wceq 1534 ∃wex 1774 [wsbc 3776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-sbc 3777 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |