Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm13.192 | Structured version Visualization version GIF version |
Description: Theorem *13.192 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.) |
Ref | Expression |
---|---|
pm13.192 | ⊢ (∃𝑦(∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpr 219 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝑥 = 𝐴)) | |
2 | 1 | alimi 1815 | . . . . . 6 ⊢ (∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝐴)) |
3 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
4 | 3 | equsalvw 2008 | . . . . . 6 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝐴) ↔ 𝑦 = 𝐴) |
5 | 2, 4 | sylib 217 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) → 𝑦 = 𝐴) |
6 | eqeq2 2750 | . . . . . . 7 ⊢ (𝐴 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑥 = 𝑦)) | |
7 | 6 | eqcoms 2746 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝐴 ↔ 𝑥 = 𝑦)) |
8 | 7 | alrimiv 1931 | . . . . 5 ⊢ (𝑦 = 𝐴 → ∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦)) |
9 | 5, 8 | impbii 208 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ↔ 𝑦 = 𝐴) |
10 | 9 | anbi1i 623 | . . 3 ⊢ ((∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ∧ 𝜑) ↔ (𝑦 = 𝐴 ∧ 𝜑)) |
11 | 10 | exbii 1851 | . 2 ⊢ (∃𝑦(∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) |
12 | sbc5 3739 | . 2 ⊢ ([𝐴 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝜑)) | |
13 | 11, 12 | bitr4i 277 | 1 ⊢ (∃𝑦(∀𝑥(𝑥 = 𝐴 ↔ 𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |