| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exbiri | Structured version Visualization version GIF version | ||
| Description: Inference form of exbir 44504. This proof is exbiriVD 44878 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.) |
| Ref | Expression |
|---|---|
| exbiri.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| exbiri | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbiri.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpar 477 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜒) |
| 3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biimp3ar 1472 ralxfrd 5378 ralxfrd2 5382 tfrlem9 8399 mapfset 8864 sbthlem1 9097 addcanpr 11060 axpre-sup 11183 lbreu 12192 zmax 12961 uzsubsubfz 13563 elfzodifsumelfzo 13747 pfxccatin12lem3 14750 cshwidxmod 14821 prmgaplem6 17076 ucnima 24219 gausslemma2dlem1a 27328 usgredg2vlem2 29205 umgr2v2enb1 29506 wwlksnext 29875 wwlksnextwrd 29879 clwwlkccatlem 29970 mdslmd1lem1 32306 mdslmd1lem2 32307 dfon2 35810 cgrextend 36026 brsegle 36126 finxpsuclem 37415 poimirlem18 37662 poimirlem21 37665 brabg2 37741 dfatcolem 47284 iccelpart 47447 |
| Copyright terms: Public domain | W3C validator |