| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exbiri | Structured version Visualization version GIF version | ||
| Description: Inference form of exbir 44499. This proof is exbiriVD 44874 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.) |
| Ref | Expression |
|---|---|
| exbiri.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| exbiri | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbiri.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpar 477 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜒) |
| 3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biimp3ar 1472 ralxfrd 5408 ralxfrd2 5412 tfrlem9 8425 mapfset 8890 sbthlem1 9123 addcanpr 11086 axpre-sup 11209 lbreu 12218 zmax 12987 uzsubsubfz 13586 elfzodifsumelfzo 13770 pfxccatin12lem3 14770 cshwidxmod 14841 prmgaplem6 17094 ucnima 24290 gausslemma2dlem1a 27409 usgredg2vlem2 29243 umgr2v2enb1 29544 wwlksnext 29913 wwlksnextwrd 29917 clwwlkccatlem 30008 mdslmd1lem1 32344 mdslmd1lem2 32345 dfon2 35793 cgrextend 36009 brsegle 36109 finxpsuclem 37398 poimirlem18 37645 poimirlem21 37648 brabg2 37724 dfatcolem 47267 iccelpart 47420 |
| Copyright terms: Public domain | W3C validator |