| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exbiri | Structured version Visualization version GIF version | ||
| Description: Inference form of exbir 44596. This proof is exbiriVD 44970 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.) |
| Ref | Expression |
|---|---|
| exbiri.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| exbiri | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbiri.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpar 477 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜒) |
| 3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biimp3ar 1472 ralxfrd 5348 ralxfrd2 5352 tfrlem9 8310 mapfset 8780 sbthlem1 9007 addcanpr 10944 axpre-sup 11067 lbreu 12079 zmax 12845 uzsubsubfz 13448 elfzodifsumelfzo 13633 pfxccatin12lem3 14641 cshwidxmod 14712 prmgaplem6 16970 ucnima 24196 gausslemma2dlem1a 27304 usgredg2vlem2 29206 umgr2v2enb1 29507 wwlksnext 29873 wwlksnextwrd 29877 clwwlkccatlem 29971 mdslmd1lem1 32307 mdslmd1lem2 32308 dfon2 35855 cgrextend 36073 brsegle 36173 finxpsuclem 37462 poimirlem18 37698 poimirlem21 37701 brabg2 37777 dfatcolem 47379 iccelpart 47557 |
| Copyright terms: Public domain | W3C validator |