| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exbiri | Structured version Visualization version GIF version | ||
| Description: Inference form of exbir 44476. This proof is exbiriVD 44850 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.) |
| Ref | Expression |
|---|---|
| exbiri.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| exbiri | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbiri.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpar 477 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜒) |
| 3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biimp3ar 1472 ralxfrd 5366 ralxfrd2 5370 tfrlem9 8356 mapfset 8826 sbthlem1 9057 addcanpr 11006 axpre-sup 11129 lbreu 12140 zmax 12911 uzsubsubfz 13514 elfzodifsumelfzo 13699 pfxccatin12lem3 14704 cshwidxmod 14775 prmgaplem6 17034 ucnima 24175 gausslemma2dlem1a 27283 usgredg2vlem2 29160 umgr2v2enb1 29461 wwlksnext 29830 wwlksnextwrd 29834 clwwlkccatlem 29925 mdslmd1lem1 32261 mdslmd1lem2 32262 dfon2 35787 cgrextend 36003 brsegle 36103 finxpsuclem 37392 poimirlem18 37639 poimirlem21 37642 brabg2 37718 dfatcolem 47260 iccelpart 47438 |
| Copyright terms: Public domain | W3C validator |