Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exbiri | Structured version Visualization version GIF version |
Description: Inference form of exbir 41987. This proof is exbiriVD 42363 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.) |
Ref | Expression |
---|---|
exbiri.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
exbiri | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbiri.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | biimpar 477 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜒) |
3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: biimp3ar 1468 ralxfrd 5326 ralxfrd2 5330 tfrlem9 8187 mapfset 8596 sbthlem1 8823 addcanpr 10733 axpre-sup 10856 lbreu 11855 zmax 12614 uzsubsubfz 13207 elfzodifsumelfzo 13381 pfxccatin12lem3 14373 cshwidxmod 14444 prmgaplem6 16685 ucnima 23341 gausslemma2dlem1a 26418 usgredg2vlem2 27496 umgr2v2enb1 27796 wwlksnext 28159 wwlksnextwrd 28163 clwwlkccatlem 28254 mdslmd1lem1 30588 mdslmd1lem2 30589 dfon2 33674 cgrextend 34237 brsegle 34337 finxpsuclem 35495 poimirlem18 35722 poimirlem21 35725 brabg2 35801 dfatcolem 44634 iccelpart 44773 |
Copyright terms: Public domain | W3C validator |