![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exbiri | Structured version Visualization version GIF version |
Description: Inference form of exbir 44476. This proof is exbiriVD 44852 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.) |
Ref | Expression |
---|---|
exbiri.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
exbiri | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbiri.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | biimpar 477 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜒) |
3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: biimp3ar 1469 ralxfrd 5414 ralxfrd2 5418 tfrlem9 8424 mapfset 8889 sbthlem1 9122 addcanpr 11084 axpre-sup 11207 lbreu 12216 zmax 12985 uzsubsubfz 13583 elfzodifsumelfzo 13767 pfxccatin12lem3 14767 cshwidxmod 14838 prmgaplem6 17090 ucnima 24306 gausslemma2dlem1a 27424 usgredg2vlem2 29258 umgr2v2enb1 29559 wwlksnext 29923 wwlksnextwrd 29927 clwwlkccatlem 30018 mdslmd1lem1 32354 mdslmd1lem2 32355 dfon2 35774 cgrextend 35990 brsegle 36090 finxpsuclem 37380 poimirlem18 37625 poimirlem21 37628 brabg2 37704 dfatcolem 47205 iccelpart 47358 |
Copyright terms: Public domain | W3C validator |