![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exbiri | Structured version Visualization version GIF version |
Description: Inference form of exbir 43541. This proof is exbiriVD 43917 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.) |
Ref | Expression |
---|---|
exbiri.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
exbiri | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbiri.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | biimpar 478 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜒) |
3 | 2 | exp31 420 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: biimp3ar 1470 ralxfrd 5406 ralxfrd2 5410 tfrlem9 8387 mapfset 8846 sbthlem1 9085 addcanpr 11043 axpre-sup 11166 lbreu 12168 zmax 12933 uzsubsubfz 13527 elfzodifsumelfzo 13702 pfxccatin12lem3 14686 cshwidxmod 14757 prmgaplem6 16993 ucnima 24006 gausslemma2dlem1a 27092 usgredg2vlem2 28738 umgr2v2enb1 29038 wwlksnext 29402 wwlksnextwrd 29406 clwwlkccatlem 29497 mdslmd1lem1 31833 mdslmd1lem2 31834 dfon2 35056 cgrextend 35272 brsegle 35372 finxpsuclem 36581 poimirlem18 36809 poimirlem21 36812 brabg2 36888 dfatcolem 46262 iccelpart 46400 |
Copyright terms: Public domain | W3C validator |