![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exbiri | Structured version Visualization version GIF version |
Description: Inference form of exbir 44449. This proof is exbiriVD 44825 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.) |
Ref | Expression |
---|---|
exbiri.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
exbiri | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbiri.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | biimpar 477 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜒) |
3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: biimp3ar 1470 ralxfrd 5426 ralxfrd2 5430 tfrlem9 8441 mapfset 8908 sbthlem1 9149 addcanpr 11115 axpre-sup 11238 lbreu 12245 zmax 13010 uzsubsubfz 13606 elfzodifsumelfzo 13782 pfxccatin12lem3 14780 cshwidxmod 14851 prmgaplem6 17103 ucnima 24311 gausslemma2dlem1a 27427 usgredg2vlem2 29261 umgr2v2enb1 29562 wwlksnext 29926 wwlksnextwrd 29930 clwwlkccatlem 30021 mdslmd1lem1 32357 mdslmd1lem2 32358 dfon2 35756 cgrextend 35972 brsegle 36072 finxpsuclem 37363 poimirlem18 37598 poimirlem21 37601 brabg2 37677 dfatcolem 47170 iccelpart 47307 |
Copyright terms: Public domain | W3C validator |