| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exbiri | Structured version Visualization version GIF version | ||
| Description: Inference form of exbir 44453. This proof is exbiriVD 44827 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.) |
| Ref | Expression |
|---|---|
| exbiri.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| exbiri | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbiri.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpar 477 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜒) |
| 3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biimp3ar 1472 ralxfrd 5350 ralxfrd2 5354 tfrlem9 8314 mapfset 8784 sbthlem1 9011 addcanpr 10959 axpre-sup 11082 lbreu 12093 zmax 12864 uzsubsubfz 13467 elfzodifsumelfzo 13652 pfxccatin12lem3 14656 cshwidxmod 14727 prmgaplem6 16986 ucnima 24184 gausslemma2dlem1a 27292 usgredg2vlem2 29189 umgr2v2enb1 29490 wwlksnext 29856 wwlksnextwrd 29860 clwwlkccatlem 29951 mdslmd1lem1 32287 mdslmd1lem2 32288 dfon2 35765 cgrextend 35981 brsegle 36081 finxpsuclem 37370 poimirlem18 37617 poimirlem21 37620 brabg2 37696 dfatcolem 47240 iccelpart 47418 |
| Copyright terms: Public domain | W3C validator |