| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exbiri | Structured version Visualization version GIF version | ||
| Description: Inference form of exbir 44511. This proof is exbiriVD 44885 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.) |
| Ref | Expression |
|---|---|
| exbiri.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| exbiri | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbiri.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpar 477 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜒) |
| 3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biimp3ar 1472 ralxfrd 5346 ralxfrd2 5350 tfrlem9 8304 mapfset 8774 sbthlem1 9000 addcanpr 10934 axpre-sup 11057 lbreu 12069 zmax 12840 uzsubsubfz 13443 elfzodifsumelfzo 13628 pfxccatin12lem3 14636 cshwidxmod 14707 prmgaplem6 16965 ucnima 24193 gausslemma2dlem1a 27301 usgredg2vlem2 29202 umgr2v2enb1 29503 wwlksnext 29869 wwlksnextwrd 29873 clwwlkccatlem 29964 mdslmd1lem1 32300 mdslmd1lem2 32301 dfon2 35825 cgrextend 36041 brsegle 36141 finxpsuclem 37430 poimirlem18 37677 poimirlem21 37680 brabg2 37756 dfatcolem 47285 iccelpart 47463 |
| Copyright terms: Public domain | W3C validator |