| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exbiri | Structured version Visualization version GIF version | ||
| Description: Inference form of exbir 44469. This proof is exbiriVD 44843 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.) |
| Ref | Expression |
|---|---|
| exbiri.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| exbiri | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbiri.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 2 | 1 | biimpar 477 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜒) |
| 3 | 2 | exp31 419 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: biimp3ar 1472 ralxfrd 5363 ralxfrd2 5367 tfrlem9 8353 mapfset 8823 sbthlem1 9051 addcanpr 10999 axpre-sup 11122 lbreu 12133 zmax 12904 uzsubsubfz 13507 elfzodifsumelfzo 13692 pfxccatin12lem3 14697 cshwidxmod 14768 prmgaplem6 17027 ucnima 24168 gausslemma2dlem1a 27276 usgredg2vlem2 29153 umgr2v2enb1 29454 wwlksnext 29823 wwlksnextwrd 29827 clwwlkccatlem 29918 mdslmd1lem1 32254 mdslmd1lem2 32255 dfon2 35780 cgrextend 35996 brsegle 36096 finxpsuclem 37385 poimirlem18 37632 poimirlem21 37635 brabg2 37711 dfatcolem 47256 iccelpart 47434 |
| Copyright terms: Public domain | W3C validator |