Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anim12 | Structured version Visualization version GIF version |
Description: Conjoin antecedents and consequents of two premises. This is the closed theorem form of anim12d 611. Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it praeclarum theorema (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
anim12 | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | id 22 | . 2 ⊢ ((𝜒 → 𝜃) → (𝜒 → 𝜃)) | |
3 | 1, 2 | im2anan9 622 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: euind 3640 reuind 3669 reusv3i 5277 opelopabt 5393 wemaplem2 9057 rexanre 14767 rlimcn2 15008 o1of2 15030 o1rlimmul 15036 2sqlem6 26120 spanuni 29440 bj-nnfan 34508 isbasisrelowllem1 35087 isbasisrelowllem2 35088 heicant 35407 pm11.71 41519 |
Copyright terms: Public domain | W3C validator |