MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anim12 Structured version   Visualization version   GIF version

Theorem anim12 805
Description: Conjoin antecedents and consequents of two premises. This is the closed theorem form of anim12d 608. Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it praeclarum theorema (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Assertion
Ref Expression
anim12 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))

Proof of Theorem anim12
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
2 id 22 . 2 ((𝜒𝜃) → (𝜒𝜃))
31, 2im2anan9 619 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  euind  3654  reuind  3683  reusv3i  5322  opelopabt  5438  wemaplem2  9236  rexanre  14986  rlimcn3  15227  o1of2  15250  o1rlimmul  15256  2sqlem6  26476  spanuni  29807  bj-nnfan  34857  isbasisrelowllem1  35453  isbasisrelowllem2  35454  heicant  35739  pm11.71  41904
  Copyright terms: Public domain W3C validator