Proof of Theorem afvres
Step | Hyp | Ref
| Expression |
1 | | elin 3899 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹)) |
2 | 1 | biimpri 227 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ (𝐵 ∩ dom 𝐹)) |
3 | | dmres 5902 |
. . . . . . . 8
⊢ dom
(𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) |
4 | 2, 3 | eleqtrrdi 2850 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom (𝐹 ↾ 𝐵)) |
5 | 4 | ex 412 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ 𝐵))) |
6 | | snssi 4738 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
7 | 6 | resabs1d 5911 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵) ↾ {𝐴}) = (𝐹 ↾ {𝐴})) |
8 | 7 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐵 → (𝐹 ↾ {𝐴}) = ((𝐹 ↾ 𝐵) ↾ {𝐴})) |
9 | 8 | funeqd 6440 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}))) |
10 | 9 | biimpd 228 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → (Fun (𝐹 ↾ {𝐴}) → Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}))) |
11 | 5, 10 | anim12d 608 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴})))) |
12 | 11 | impcom 407 |
. . . 4
⊢ (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}))) |
13 | | df-dfat 44498 |
. . . . 5
⊢ ((𝐹 ↾ 𝐵) defAt 𝐴 ↔ (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}))) |
14 | | afvfundmfveq 44517 |
. . . . 5
⊢ ((𝐹 ↾ 𝐵) defAt 𝐴 → ((𝐹 ↾ 𝐵)'''𝐴) = ((𝐹 ↾ 𝐵)‘𝐴)) |
15 | 13, 14 | sylbir 234 |
. . . 4
⊢ ((𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴})) → ((𝐹 ↾ 𝐵)'''𝐴) = ((𝐹 ↾ 𝐵)‘𝐴)) |
16 | 12, 15 | syl 17 |
. . 3
⊢ (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴 ∈ 𝐵) → ((𝐹 ↾ 𝐵)'''𝐴) = ((𝐹 ↾ 𝐵)‘𝐴)) |
17 | | fvres 6775 |
. . . 4
⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
18 | 17 | adantl 481 |
. . 3
⊢ (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴 ∈ 𝐵) → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) |
19 | | df-dfat 44498 |
. . . . . 6
⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
20 | | afvfundmfveq 44517 |
. . . . . 6
⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) |
21 | 19, 20 | sylbir 234 |
. . . . 5
⊢ ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = (𝐹‘𝐴)) |
22 | 21 | eqcomd 2744 |
. . . 4
⊢ ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹‘𝐴) = (𝐹'''𝐴)) |
23 | 22 | adantr 480 |
. . 3
⊢ (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = (𝐹'''𝐴)) |
24 | 16, 18, 23 | 3eqtrd 2782 |
. 2
⊢ (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴 ∈ 𝐵) → ((𝐹 ↾ 𝐵)'''𝐴) = (𝐹'''𝐴)) |
25 | | pm3.4 806 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹) → (𝐴 ∈ 𝐵 → 𝐴 ∈ dom 𝐹)) |
26 | 1, 25 | sylbi 216 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝐵 ∩ dom 𝐹) → (𝐴 ∈ 𝐵 → 𝐴 ∈ dom 𝐹)) |
27 | 26, 3 | eleq2s 2857 |
. . . . . . . 8
⊢ (𝐴 ∈ dom (𝐹 ↾ 𝐵) → (𝐴 ∈ 𝐵 → 𝐴 ∈ dom 𝐹)) |
28 | 27 | com12 32 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ dom (𝐹 ↾ 𝐵) → 𝐴 ∈ dom 𝐹)) |
29 | 7 | funeqd 6440 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐵 → (Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}) ↔ Fun (𝐹 ↾ {𝐴}))) |
30 | 29 | biimpd 228 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐵 → (Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}) → Fun (𝐹 ↾ {𝐴}))) |
31 | 28, 30 | anim12d 608 |
. . . . . 6
⊢ (𝐴 ∈ 𝐵 → ((𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴})) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))) |
32 | 31 | con3d 152 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → ¬ (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴})))) |
33 | 32 | impcom 407 |
. . . 4
⊢ ((¬
(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴 ∈ 𝐵) → ¬ (𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴}))) |
34 | | afvnfundmuv 44518 |
. . . . 5
⊢ (¬
(𝐹 ↾ 𝐵) defAt 𝐴 → ((𝐹 ↾ 𝐵)'''𝐴) = V) |
35 | 13, 34 | sylnbir 330 |
. . . 4
⊢ (¬
(𝐴 ∈ dom (𝐹 ↾ 𝐵) ∧ Fun ((𝐹 ↾ 𝐵) ↾ {𝐴})) → ((𝐹 ↾ 𝐵)'''𝐴) = V) |
36 | 33, 35 | syl 17 |
. . 3
⊢ ((¬
(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴 ∈ 𝐵) → ((𝐹 ↾ 𝐵)'''𝐴) = V) |
37 | | afvnfundmuv 44518 |
. . . . . 6
⊢ (¬
𝐹 defAt 𝐴 → (𝐹'''𝐴) = V) |
38 | 19, 37 | sylnbir 330 |
. . . . 5
⊢ (¬
(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = V) |
39 | 38 | eqcomd 2744 |
. . . 4
⊢ (¬
(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → V = (𝐹'''𝐴)) |
40 | 39 | adantr 480 |
. . 3
⊢ ((¬
(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴 ∈ 𝐵) → V = (𝐹'''𝐴)) |
41 | 36, 40 | eqtrd 2778 |
. 2
⊢ ((¬
(𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴 ∈ 𝐵) → ((𝐹 ↾ 𝐵)'''𝐴) = (𝐹'''𝐴)) |
42 | 24, 41 | pm2.61ian 808 |
1
⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)'''𝐴) = (𝐹'''𝐴)) |