Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvres Structured version   Visualization version   GIF version

Theorem afvres 45928
Description: The value of a restricted function, analogous to fvres 6911. (Contributed by Alexander van der Vekens, 22-Jul-2017.)
Assertion
Ref Expression
afvres (𝐴𝐵 → ((𝐹𝐵)'''𝐴) = (𝐹'''𝐴))

Proof of Theorem afvres
StepHypRef Expression
1 elin 3965 . . . . . . . . 9 (𝐴 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝐴𝐵𝐴 ∈ dom 𝐹))
21biimpri 227 . . . . . . . 8 ((𝐴𝐵𝐴 ∈ dom 𝐹) → 𝐴 ∈ (𝐵 ∩ dom 𝐹))
3 dmres 6004 . . . . . . . 8 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
42, 3eleqtrrdi 2845 . . . . . . 7 ((𝐴𝐵𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom (𝐹𝐵))
54ex 414 . . . . . 6 (𝐴𝐵 → (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹𝐵)))
6 snssi 4812 . . . . . . . . . 10 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
76resabs1d 6013 . . . . . . . . 9 (𝐴𝐵 → ((𝐹𝐵) ↾ {𝐴}) = (𝐹 ↾ {𝐴}))
87eqcomd 2739 . . . . . . . 8 (𝐴𝐵 → (𝐹 ↾ {𝐴}) = ((𝐹𝐵) ↾ {𝐴}))
98funeqd 6571 . . . . . . 7 (𝐴𝐵 → (Fun (𝐹 ↾ {𝐴}) ↔ Fun ((𝐹𝐵) ↾ {𝐴})))
109biimpd 228 . . . . . 6 (𝐴𝐵 → (Fun (𝐹 ↾ {𝐴}) → Fun ((𝐹𝐵) ↾ {𝐴})))
115, 10anim12d 610 . . . . 5 (𝐴𝐵 → ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴}))))
1211impcom 409 . . . 4 (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐵) → (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})))
13 df-dfat 45875 . . . . 5 ((𝐹𝐵) defAt 𝐴 ↔ (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})))
14 afvfundmfveq 45894 . . . . 5 ((𝐹𝐵) defAt 𝐴 → ((𝐹𝐵)'''𝐴) = ((𝐹𝐵)‘𝐴))
1513, 14sylbir 234 . . . 4 ((𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})) → ((𝐹𝐵)'''𝐴) = ((𝐹𝐵)‘𝐴))
1612, 15syl 17 . . 3 (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐵) → ((𝐹𝐵)'''𝐴) = ((𝐹𝐵)‘𝐴))
17 fvres 6911 . . . 4 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
1817adantl 483 . . 3 (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐵) → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
19 df-dfat 45875 . . . . . 6 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
20 afvfundmfveq 45894 . . . . . 6 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
2119, 20sylbir 234 . . . . 5 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = (𝐹𝐴))
2221eqcomd 2739 . . . 4 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹𝐴) = (𝐹'''𝐴))
2322adantr 482 . . 3 (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐵) → (𝐹𝐴) = (𝐹'''𝐴))
2416, 18, 233eqtrd 2777 . 2 (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐵) → ((𝐹𝐵)'''𝐴) = (𝐹'''𝐴))
25 pm3.4 809 . . . . . . . . . 10 ((𝐴𝐵𝐴 ∈ dom 𝐹) → (𝐴𝐵𝐴 ∈ dom 𝐹))
261, 25sylbi 216 . . . . . . . . 9 (𝐴 ∈ (𝐵 ∩ dom 𝐹) → (𝐴𝐵𝐴 ∈ dom 𝐹))
2726, 3eleq2s 2852 . . . . . . . 8 (𝐴 ∈ dom (𝐹𝐵) → (𝐴𝐵𝐴 ∈ dom 𝐹))
2827com12 32 . . . . . . 7 (𝐴𝐵 → (𝐴 ∈ dom (𝐹𝐵) → 𝐴 ∈ dom 𝐹))
297funeqd 6571 . . . . . . . 8 (𝐴𝐵 → (Fun ((𝐹𝐵) ↾ {𝐴}) ↔ Fun (𝐹 ↾ {𝐴})))
3029biimpd 228 . . . . . . 7 (𝐴𝐵 → (Fun ((𝐹𝐵) ↾ {𝐴}) → Fun (𝐹 ↾ {𝐴})))
3128, 30anim12d 610 . . . . . 6 (𝐴𝐵 → ((𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))))
3231con3d 152 . . . . 5 (𝐴𝐵 → (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → ¬ (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴}))))
3332impcom 409 . . . 4 ((¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐵) → ¬ (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})))
34 afvnfundmuv 45895 . . . . 5 (¬ (𝐹𝐵) defAt 𝐴 → ((𝐹𝐵)'''𝐴) = V)
3513, 34sylnbir 331 . . . 4 (¬ (𝐴 ∈ dom (𝐹𝐵) ∧ Fun ((𝐹𝐵) ↾ {𝐴})) → ((𝐹𝐵)'''𝐴) = V)
3633, 35syl 17 . . 3 ((¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐵) → ((𝐹𝐵)'''𝐴) = V)
37 afvnfundmuv 45895 . . . . . 6 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V)
3819, 37sylnbir 331 . . . . 5 (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = V)
3938eqcomd 2739 . . . 4 (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → V = (𝐹'''𝐴))
4039adantr 482 . . 3 ((¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐵) → V = (𝐹'''𝐴))
4136, 40eqtrd 2773 . 2 ((¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐴𝐵) → ((𝐹𝐵)'''𝐴) = (𝐹'''𝐴))
4224, 41pm2.61ian 811 1 (𝐴𝐵 → ((𝐹𝐵)'''𝐴) = (𝐹'''𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  cin 3948  {csn 4629  dom cdm 5677  cres 5679  Fun wfun 6538  cfv 6544   defAt wdfat 45872  '''cafv 45873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552  df-aiota 45841  df-dfat 45875  df-afv 45876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator