Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32e Structured version   Visualization version   GIF version

Theorem cdleme32e 40427
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
cdleme32.b 𝐵 = (Base‘𝐾)
cdleme32.l = (le‘𝐾)
cdleme32.j = (join‘𝐾)
cdleme32.m = (meet‘𝐾)
cdleme32.a 𝐴 = (Atoms‘𝐾)
cdleme32.h 𝐻 = (LHyp‘𝐾)
cdleme32.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme32.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme32.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme32.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdleme32.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
cdleme32.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
cdleme32.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme32.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme32e ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐹𝑋) (𝐹𝑌))
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,𝐴   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝑦,𝐶   𝐷,𝑠,𝑦,𝑧   𝑦,𝐸   𝐻,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝑥,𝑁,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   𝑋,𝑠,𝑡,𝑥,𝑧   𝑦,𝐻   𝑦,𝐾   𝑦,𝑌   𝑧,𝐻   𝑧,𝐾   𝑌,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑡,𝑠)   𝐷(𝑥,𝑡)   𝐸(𝑥,𝑧,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐾(𝑥)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑋(𝑦)

Proof of Theorem cdleme32e
StepHypRef Expression
1 simp23l 1295 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑃𝑄)
21pm2.24d 151 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (¬ 𝑃𝑄𝑋 (𝑁 (𝑌 𝑊))))
3 simp11l 1285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝐾 ∈ HL)
43hllatd 39345 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝐾 ∈ Lat)
5 simp21l 1291 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑋𝐵)
6 simp11r 1286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑊𝐻)
7 cdleme32.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 cdleme32.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
97, 8lhpbase 39980 . . . . . 6 (𝑊𝐻𝑊𝐵)
106, 9syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑊𝐵)
11 cdleme32.l . . . . . 6 = (le‘𝐾)
12 cdleme32.m . . . . . 6 = (meet‘𝐾)
137, 11, 12latleeqm1 18391 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊 ↔ (𝑋 𝑊) = 𝑋))
144, 5, 10, 13syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑊 ↔ (𝑋 𝑊) = 𝑋))
157, 12latmcl 18364 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
164, 5, 10, 15syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑊) ∈ 𝐵)
17 simp21r 1292 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑌𝐵)
187, 12latmcl 18364 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
194, 17, 10, 18syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑌 𝑊) ∈ 𝐵)
20 simp11 1204 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simp12 1205 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
22 simp13 1206 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
23 simp31 1210 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
24 cdleme32.j . . . . . . . . 9 = (join‘𝐾)
25 cdleme32.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
26 cdleme32.u . . . . . . . . 9 𝑈 = ((𝑃 𝑄) 𝑊)
27 cdleme32.c . . . . . . . . 9 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
28 cdleme32.d . . . . . . . . 9 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
29 cdleme32.e . . . . . . . . 9 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
30 cdleme32.i . . . . . . . . 9 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
31 cdleme32.n . . . . . . . . 9 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
327, 11, 24, 12, 25, 8, 26, 27, 28, 29, 30, 31cdleme27cl 40348 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ 𝑃𝑄)) → 𝑁𝐵)
3320, 21, 22, 23, 1, 32syl122anc 1381 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑁𝐵)
347, 24latjcl 18363 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑁𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → (𝑁 (𝑌 𝑊)) ∈ 𝐵)
354, 33, 19, 34syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑁 (𝑌 𝑊)) ∈ 𝐵)
36 simp33 1212 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑋 𝑌)
377, 11, 12latmlem1 18393 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑊𝐵)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
384, 5, 17, 10, 37syl13anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
3936, 38mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑊) (𝑌 𝑊))
407, 11, 24latlej2 18373 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑁𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → (𝑌 𝑊) (𝑁 (𝑌 𝑊)))
414, 33, 19, 40syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑌 𝑊) (𝑁 (𝑌 𝑊)))
427, 11, 4, 16, 19, 35, 39, 41lattrd 18370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑊) (𝑁 (𝑌 𝑊)))
43 breq1 5098 . . . . 5 ((𝑋 𝑊) = 𝑋 → ((𝑋 𝑊) (𝑁 (𝑌 𝑊)) ↔ 𝑋 (𝑁 (𝑌 𝑊))))
4442, 43syl5ibcom 245 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → ((𝑋 𝑊) = 𝑋𝑋 (𝑁 (𝑌 𝑊))))
4514, 44sylbid 240 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑊𝑋 (𝑁 (𝑌 𝑊))))
46 simp22 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊))
47 pm4.53 987 . . . 4 (¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ↔ (¬ 𝑃𝑄𝑋 𝑊))
4846, 47sylib 218 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (¬ 𝑃𝑄𝑋 𝑊))
492, 45, 48mpjaod 860 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑋 (𝑁 (𝑌 𝑊)))
50 cdleme32.f . . . 4 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
5150cdleme31fv2 40375 . . 3 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
525, 46, 51syl2anc 584 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐹𝑋) = 𝑋)
53 simp1 1136 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
54 simp23 1209 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑃𝑄 ∧ ¬ 𝑌 𝑊))
55 simp32 1211 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) = 𝑌)
56 cdleme32.o . . . 4 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
577, 11, 24, 12, 25, 8, 26, 27, 28, 29, 30, 31, 56, 50cdleme32a 40423 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌)) → (𝐹𝑌) = (𝑁 (𝑌 𝑊)))
5853, 17, 54, 23, 55, 57syl122anc 1381 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐹𝑌) = (𝑁 (𝑌 𝑊)))
5949, 52, 583brtr4d 5127 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐹𝑋) (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  ifcif 4478   class class class wbr 5095  cmpt 5176  cfv 6486  crio 7309  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  meetcmee 18236  Latclat 18355  Atomscatm 39244  HLchlt 39331  LHypclh 39966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-riotaBAD 38934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-undef 8213  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480  df-lplanes 39481  df-lvols 39482  df-lines 39483  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970
This theorem is referenced by:  cdleme32f  40428
  Copyright terms: Public domain W3C validator