Proof of Theorem cdleme32e
Step | Hyp | Ref
| Expression |
1 | | simp23l 1292 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑃 ≠ 𝑄) |
2 | 1 | pm2.24d 151 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (¬ 𝑃 ≠ 𝑄 → 𝑋 ≤ (𝑁 ∨ (𝑌 ∧ 𝑊)))) |
3 | | simp11l 1282 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝐾 ∈ HL) |
4 | 3 | hllatd 37305 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝐾 ∈ Lat) |
5 | | simp21l 1288 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑋 ∈ 𝐵) |
6 | | simp11r 1283 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑊 ∈ 𝐻) |
7 | | cdleme32.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
8 | | cdleme32.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
9 | 7, 8 | lhpbase 37939 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
10 | 6, 9 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑊 ∈ 𝐵) |
11 | | cdleme32.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
12 | | cdleme32.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
13 | 7, 11, 12 | latleeqm1 18100 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ≤ 𝑊 ↔ (𝑋 ∧ 𝑊) = 𝑋)) |
14 | 4, 5, 10, 13 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ≤ 𝑊 ↔ (𝑋 ∧ 𝑊) = 𝑋)) |
15 | 7, 12 | latmcl 18073 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
16 | 4, 5, 10, 15 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
17 | | simp21r 1289 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑌 ∈ 𝐵) |
18 | 7, 12 | latmcl 18073 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
19 | 4, 17, 10, 18 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
20 | | simp11 1201 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
21 | | simp12 1202 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
22 | | simp13 1203 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
23 | | simp31 1207 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) |
24 | | cdleme32.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
25 | | cdleme32.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
26 | | cdleme32.u |
. . . . . . . . 9
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
27 | | cdleme32.c |
. . . . . . . . 9
⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
28 | | cdleme32.d |
. . . . . . . . 9
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
29 | | cdleme32.e |
. . . . . . . . 9
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
30 | | cdleme32.i |
. . . . . . . . 9
⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)) |
31 | | cdleme32.n |
. . . . . . . . 9
⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) |
32 | 7, 11, 24, 12, 25, 8, 26, 27, 28, 29, 30, 31 | cdleme27cl 38307 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄)) → 𝑁 ∈ 𝐵) |
33 | 20, 21, 22, 23, 1, 32 | syl122anc 1377 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑁 ∈ 𝐵) |
34 | 7, 24 | latjcl 18072 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑁 ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ∈ 𝐵) → (𝑁 ∨ (𝑌 ∧ 𝑊)) ∈ 𝐵) |
35 | 4, 33, 19, 34 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑁 ∨ (𝑌 ∧ 𝑊)) ∈ 𝐵) |
36 | | simp33 1209 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑋 ≤ 𝑌) |
37 | 7, 11, 12 | latmlem1 18102 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊))) |
38 | 4, 5, 17, 10, 37 | syl13anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊))) |
39 | 36, 38 | mpd 15 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊)) |
40 | 7, 11, 24 | latlej2 18082 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑁 ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ∈ 𝐵) → (𝑌 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |
41 | 4, 33, 19, 40 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑌 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |
42 | 7, 11, 4, 16, 19, 35, 39, 41 | lattrd 18079 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |
43 | | breq1 5073 |
. . . . 5
⊢ ((𝑋 ∧ 𝑊) = 𝑋 → ((𝑋 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊)) ↔ 𝑋 ≤ (𝑁 ∨ (𝑌 ∧ 𝑊)))) |
44 | 42, 43 | syl5ibcom 244 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → ((𝑋 ∧ 𝑊) = 𝑋 → 𝑋 ≤ (𝑁 ∨ (𝑌 ∧ 𝑊)))) |
45 | 14, 44 | sylbid 239 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑋 ≤ 𝑊 → 𝑋 ≤ (𝑁 ∨ (𝑌 ∧ 𝑊)))) |
46 | | simp22 1205 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) |
47 | | pm4.53 982 |
. . . 4
⊢ (¬
(𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ↔ (¬ 𝑃 ≠ 𝑄 ∨ 𝑋 ≤ 𝑊)) |
48 | 46, 47 | sylib 217 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (¬ 𝑃 ≠ 𝑄 ∨ 𝑋 ≤ 𝑊)) |
49 | 2, 45, 48 | mpjaod 856 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → 𝑋 ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |
50 | | cdleme32.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) |
51 | 50 | cdleme31fv2 38334 |
. . 3
⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
52 | 5, 46, 51 | syl2anc 583 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐹‘𝑋) = 𝑋) |
53 | | simp1 1134 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
54 | | simp23 1206 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) |
55 | | simp32 1208 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌) |
56 | | cdleme32.o |
. . . 4
⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) |
57 | 7, 11, 24, 12, 25, 8, 26, 27, 28, 29, 30, 31, 56, 50 | cdleme32a 38382 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑌 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌)) → (𝐹‘𝑌) = (𝑁 ∨ (𝑌 ∧ 𝑊))) |
58 | 53, 17, 54, 23, 55, 57 | syl122anc 1377 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐹‘𝑌) = (𝑁 ∨ (𝑌 ∧ 𝑊))) |
59 | 49, 52, 58 | 3brtr4d 5102 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑌 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ 𝑋 ≤ 𝑌)) → (𝐹‘𝑋) ≤ (𝐹‘𝑌)) |