Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme32e Structured version   Visualization version   GIF version

Theorem cdleme32e 40484
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
cdleme32.b 𝐵 = (Base‘𝐾)
cdleme32.l = (le‘𝐾)
cdleme32.j = (join‘𝐾)
cdleme32.m = (meet‘𝐾)
cdleme32.a 𝐴 = (Atoms‘𝐾)
cdleme32.h 𝐻 = (LHyp‘𝐾)
cdleme32.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme32.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme32.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme32.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdleme32.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
cdleme32.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
cdleme32.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme32.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme32e ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐹𝑋) (𝐹𝑌))
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,𝐴   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝑦,𝐶   𝐷,𝑠,𝑦,𝑧   𝑦,𝐸   𝐻,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝑥,𝑁,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   𝑋,𝑠,𝑡,𝑥,𝑧   𝑦,𝐻   𝑦,𝐾   𝑦,𝑌   𝑧,𝐻   𝑧,𝐾   𝑌,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑡,𝑠)   𝐷(𝑥,𝑡)   𝐸(𝑥,𝑧,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐾(𝑥)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑋(𝑦)

Proof of Theorem cdleme32e
StepHypRef Expression
1 simp23l 1295 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑃𝑄)
21pm2.24d 151 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (¬ 𝑃𝑄𝑋 (𝑁 (𝑌 𝑊))))
3 simp11l 1285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝐾 ∈ HL)
43hllatd 39403 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝐾 ∈ Lat)
5 simp21l 1291 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑋𝐵)
6 simp11r 1286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑊𝐻)
7 cdleme32.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 cdleme32.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
97, 8lhpbase 40037 . . . . . 6 (𝑊𝐻𝑊𝐵)
106, 9syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑊𝐵)
11 cdleme32.l . . . . . 6 = (le‘𝐾)
12 cdleme32.m . . . . . 6 = (meet‘𝐾)
137, 11, 12latleeqm1 18368 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊 ↔ (𝑋 𝑊) = 𝑋))
144, 5, 10, 13syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑊 ↔ (𝑋 𝑊) = 𝑋))
157, 12latmcl 18341 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
164, 5, 10, 15syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑊) ∈ 𝐵)
17 simp21r 1292 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑌𝐵)
187, 12latmcl 18341 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
194, 17, 10, 18syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑌 𝑊) ∈ 𝐵)
20 simp11 1204 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simp12 1205 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
22 simp13 1206 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
23 simp31 1210 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
24 cdleme32.j . . . . . . . . 9 = (join‘𝐾)
25 cdleme32.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
26 cdleme32.u . . . . . . . . 9 𝑈 = ((𝑃 𝑄) 𝑊)
27 cdleme32.c . . . . . . . . 9 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
28 cdleme32.d . . . . . . . . 9 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
29 cdleme32.e . . . . . . . . 9 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
30 cdleme32.i . . . . . . . . 9 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
31 cdleme32.n . . . . . . . . 9 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
327, 11, 24, 12, 25, 8, 26, 27, 28, 29, 30, 31cdleme27cl 40405 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ 𝑃𝑄)) → 𝑁𝐵)
3320, 21, 22, 23, 1, 32syl122anc 1381 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑁𝐵)
347, 24latjcl 18340 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑁𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → (𝑁 (𝑌 𝑊)) ∈ 𝐵)
354, 33, 19, 34syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑁 (𝑌 𝑊)) ∈ 𝐵)
36 simp33 1212 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑋 𝑌)
377, 11, 12latmlem1 18370 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑊𝐵)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
384, 5, 17, 10, 37syl13anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑌 → (𝑋 𝑊) (𝑌 𝑊)))
3936, 38mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑊) (𝑌 𝑊))
407, 11, 24latlej2 18350 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑁𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → (𝑌 𝑊) (𝑁 (𝑌 𝑊)))
414, 33, 19, 40syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑌 𝑊) (𝑁 (𝑌 𝑊)))
427, 11, 4, 16, 19, 35, 39, 41lattrd 18347 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑊) (𝑁 (𝑌 𝑊)))
43 breq1 5089 . . . . 5 ((𝑋 𝑊) = 𝑋 → ((𝑋 𝑊) (𝑁 (𝑌 𝑊)) ↔ 𝑋 (𝑁 (𝑌 𝑊))))
4442, 43syl5ibcom 245 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → ((𝑋 𝑊) = 𝑋𝑋 (𝑁 (𝑌 𝑊))))
4514, 44sylbid 240 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑋 𝑊𝑋 (𝑁 (𝑌 𝑊))))
46 simp22 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊))
47 pm4.53 987 . . . 4 (¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ↔ (¬ 𝑃𝑄𝑋 𝑊))
4846, 47sylib 218 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (¬ 𝑃𝑄𝑋 𝑊))
492, 45, 48mpjaod 860 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → 𝑋 (𝑁 (𝑌 𝑊)))
50 cdleme32.f . . . 4 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
5150cdleme31fv2 40432 . . 3 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
525, 46, 51syl2anc 584 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐹𝑋) = 𝑋)
53 simp1 1136 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
54 simp23 1209 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑃𝑄 ∧ ¬ 𝑌 𝑊))
55 simp32 1211 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝑠 (𝑌 𝑊)) = 𝑌)
56 cdleme32.o . . . 4 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
577, 11, 24, 12, 25, 8, 26, 27, 28, 29, 30, 31, 56, 50cdleme32a 40480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑌𝐵 ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌)) → (𝐹𝑌) = (𝑁 (𝑌 𝑊)))
5853, 17, 54, 23, 55, 57syl122anc 1381 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐹𝑌) = (𝑁 (𝑌 𝑊)))
5949, 52, 583brtr4d 5118 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑋𝐵𝑌𝐵) ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑌 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠 (𝑌 𝑊)) = 𝑌𝑋 𝑌)) → (𝐹𝑋) (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  ifcif 4470   class class class wbr 5086  cmpt 5167  cfv 6476  crio 7297  (class class class)co 7341  Basecbs 17115  lecple 17163  joincjn 18212  meetcmee 18213  Latclat 18332  Atomscatm 39302  HLchlt 39389  LHypclh 40023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-riotaBAD 38992
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-undef 8198  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539  df-lines 39540  df-psubsp 39542  df-pmap 39543  df-padd 39835  df-lhyp 40027
This theorem is referenced by:  cdleme32f  40485
  Copyright terms: Public domain W3C validator