Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  undif3VD Structured version   Visualization version   GIF version

Theorem undif3VD 44871
Description: The first equality of Exercise 13 of [TakeutiZaring] p. 22. Virtual deduction proof of undif3 4263. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. undif3 4263 is undif3VD 44871 without virtual deductions and was automatically derived from undif3VD 44871.
1:: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴 𝑥 ∈ (𝐵𝐶)))
2:: (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥 𝐶))
3:2: ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥 𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4:1,3: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
5:: (   𝑥𝐴   ▶   𝑥𝐴   )
6:5: (   𝑥𝐴   ▶   (𝑥𝐴𝑥𝐵)   )
7:5: (   𝑥𝐴   ▶   𝑥𝐶𝑥𝐴)   )
8:6,7: (   𝑥𝐴   ▶   ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶𝑥𝐴))   )
9:8: (𝑥𝐴 → ((𝑥𝐴𝑥𝐵) ∧ ( ¬ 𝑥𝐶𝑥𝐴)))
10:: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   )
11:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐵   )
12:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   ¬ 𝑥𝐶    )
13:11: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 𝑥𝐵)   )
14:12: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥 𝐶𝑥𝐴)   )
15:13,14: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   ((𝑥 𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))   )
16:15: ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → ((𝑥𝐴 𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
17:9,16: ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
18:: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   )
19:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐴   )
20:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   ¬ 𝑥𝐶    )
21:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
22:21: ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
23:: (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴 𝑥𝐴)   )
24:23: (   (𝑥𝐴𝑥𝐴)   ▶   𝑥𝐴   )
25:24: (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
26:25: ((𝑥𝐴𝑥𝐴) → (𝑥𝐴 ∨ ( 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
27:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
28:27: ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
29:: (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐵 𝑥𝐴)   )
30:29: (   (𝑥𝐵𝑥𝐴)   ▶   𝑥𝐴   )
31:30: (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
32:31: ((𝑥𝐵𝑥𝐴) → (𝑥𝐴 ∨ ( 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
33:22,26: (((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
34:28,32: (((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
35:33,34: ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥 𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
36:: ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥 𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
37:36,35: (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
38:17,37: ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
39:: (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥 𝐴))
40:39: 𝑥 ∈ (𝐶𝐴) ↔ ¬ (𝑥𝐶 ¬ 𝑥𝐴))
41:: (¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴) ↔ (¬ 𝑥 𝐶𝑥𝐴))
42:40,41: 𝑥 ∈ (𝐶𝐴) ↔ (¬ 𝑥𝐶𝑥 𝐴))
43:: (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵 ))
44:43,42: ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴) ) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
45:: (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ( 𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)))
46:45,44: (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ( (𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
47:4,38: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ ((𝑥𝐴 𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
48:46,47: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴 𝐵) ∖ (𝐶𝐴)))
49:48: 𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ((𝐴𝐵) ∖ (𝐶𝐴)))
qed:49: (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶 𝐴))
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
undif3VD (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))

Proof of Theorem undif3VD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elun 4116 . . . . . 6 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
2 eldif 3924 . . . . . . 7 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
32orbi2i 912 . . . . . 6 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
41, 3bitri 275 . . . . 5 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
5 idn1 44564 . . . . . . . . . 10 (   𝑥𝐴   ▶   𝑥𝐴   )
6 orc 867 . . . . . . . . . 10 (𝑥𝐴 → (𝑥𝐴𝑥𝐵))
75, 6e1a 44617 . . . . . . . . 9 (   𝑥𝐴   ▶   (𝑥𝐴𝑥𝐵)   )
8 olc 868 . . . . . . . . . 10 (𝑥𝐴 → (¬ 𝑥𝐶𝑥𝐴))
95, 8e1a 44617 . . . . . . . . 9 (   𝑥𝐴   ▶   𝑥𝐶𝑥𝐴)   )
10 pm3.2 469 . . . . . . . . 9 ((𝑥𝐴𝑥𝐵) → ((¬ 𝑥𝐶𝑥𝐴) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))))
117, 9, 10e11 44678 . . . . . . . 8 (   𝑥𝐴   ▶   ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))   )
1211in1 44561 . . . . . . 7 (𝑥𝐴 → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
13 idn1 44564 . . . . . . . . . . 11 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   )
14 simpl 482 . . . . . . . . . . 11 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → 𝑥𝐵)
1513, 14e1a 44617 . . . . . . . . . 10 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐵   )
16 olc 868 . . . . . . . . . 10 (𝑥𝐵 → (𝑥𝐴𝑥𝐵))
1715, 16e1a 44617 . . . . . . . . 9 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴𝑥𝐵)   )
18 simpr 484 . . . . . . . . . . 11 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → ¬ 𝑥𝐶)
1913, 18e1a 44617 . . . . . . . . . 10 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶    ¬ 𝑥𝐶   )
20 orc 867 . . . . . . . . . 10 𝑥𝐶 → (¬ 𝑥𝐶𝑥𝐴))
2119, 20e1a 44617 . . . . . . . . 9 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐶𝑥𝐴)   )
2217, 21, 10e11 44678 . . . . . . . 8 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))   )
2322in1 44561 . . . . . . 7 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
2412, 23jaoi 857 . . . . . 6 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
25 anddi 1012 . . . . . . . 8 (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)) ↔ (((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))))
2625bicomi 224 . . . . . . 7 ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
27 idn1 44564 . . . . . . . . . . 11 (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   )
28 simpl 482 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → 𝑥𝐴)
2928orcd 873 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
3027, 29e1a 44617 . . . . . . . . . 10 (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
3130in1 44561 . . . . . . . . 9 ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
32 idn1 44564 . . . . . . . . . . . 12 (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴𝑥𝐴)   )
33 simpl 482 . . . . . . . . . . . 12 ((𝑥𝐴𝑥𝐴) → 𝑥𝐴)
3432, 33e1a 44617 . . . . . . . . . . 11 (   (𝑥𝐴𝑥𝐴)   ▶   𝑥𝐴   )
35 orc 867 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
3634, 35e1a 44617 . . . . . . . . . 10 (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
3736in1 44561 . . . . . . . . 9 ((𝑥𝐴𝑥𝐴) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
3831, 37jaoi 857 . . . . . . . 8 (((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
39 olc 868 . . . . . . . . . . 11 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4013, 39e1a 44617 . . . . . . . . . 10 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
4140in1 44561 . . . . . . . . 9 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
42 idn1 44564 . . . . . . . . . . . 12 (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐵𝑥𝐴)   )
43 simpr 484 . . . . . . . . . . . 12 ((𝑥𝐵𝑥𝐴) → 𝑥𝐴)
4442, 43e1a 44617 . . . . . . . . . . 11 (   (𝑥𝐵𝑥𝐴)   ▶   𝑥𝐴   )
4544, 35e1a 44617 . . . . . . . . . 10 (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
4645in1 44561 . . . . . . . . 9 ((𝑥𝐵𝑥𝐴) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4741, 46jaoi 857 . . . . . . . 8 (((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4838, 47jaoi 857 . . . . . . 7 ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4926, 48sylbir 235 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
5024, 49impbii 209 . . . . 5 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
514, 50bitri 275 . . . 4 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
52 eldif 3924 . . . . 5 (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)))
53 elun 4116 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
54 eldif 3924 . . . . . . . 8 (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
5554notbii 320 . . . . . . 7 𝑥 ∈ (𝐶𝐴) ↔ ¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
56 pm4.53 987 . . . . . . 7 (¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴) ↔ (¬ 𝑥𝐶𝑥𝐴))
5755, 56bitri 275 . . . . . 6 𝑥 ∈ (𝐶𝐴) ↔ (¬ 𝑥𝐶𝑥𝐴))
5853, 57anbi12i 628 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
5952, 58bitri 275 . . . 4 (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
6051, 59bitr4i 278 . . 3 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)))
6160ax-gen 1795 . 2 𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)))
62 dfcleq 2722 . . 3 ((𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴))))
6362biimpri 228 . 2 (∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴))) → (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴)))
6461, 63e0a 44761 1 (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  cdif 3911  cun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-un 3919  df-vd1 44560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator