Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  undif3VD Structured version   Visualization version   GIF version

Theorem undif3VD 40768
Description: The first equality of Exercise 13 of [TakeutiZaring] p. 22. Virtual deduction proof of undif3 4187. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. undif3 4187 is undif3VD 40768 without virtual deductions and was automatically derived from undif3VD 40768.
1:: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴 𝑥 ∈ (𝐵𝐶)))
2:: (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥 𝐶))
3:2: ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥 𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4:1,3: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
5:: (   𝑥𝐴   ▶   𝑥𝐴   )
6:5: (   𝑥𝐴   ▶   (𝑥𝐴𝑥𝐵)   )
7:5: (   𝑥𝐴   ▶   𝑥𝐶𝑥𝐴)   )
8:6,7: (   𝑥𝐴   ▶   ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶𝑥𝐴))   )
9:8: (𝑥𝐴 → ((𝑥𝐴𝑥𝐵) ∧ ( ¬ 𝑥𝐶𝑥𝐴)))
10:: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   )
11:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐵   )
12:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   ¬ 𝑥𝐶    )
13:11: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 𝑥𝐵)   )
14:12: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥 𝐶𝑥𝐴)   )
15:13,14: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   ((𝑥 𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))   )
16:15: ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → ((𝑥𝐴 𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
17:9,16: ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
18:: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   )
19:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐴   )
20:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   ¬ 𝑥𝐶    )
21:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
22:21: ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
23:: (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴 𝑥𝐴)   )
24:23: (   (𝑥𝐴𝑥𝐴)   ▶   𝑥𝐴   )
25:24: (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
26:25: ((𝑥𝐴𝑥𝐴) → (𝑥𝐴 ∨ ( 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
27:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
28:27: ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
29:: (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐵 𝑥𝐴)   )
30:29: (   (𝑥𝐵𝑥𝐴)   ▶   𝑥𝐴   )
31:30: (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
32:31: ((𝑥𝐵𝑥𝐴) → (𝑥𝐴 ∨ ( 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
33:22,26: (((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
34:28,32: (((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
35:33,34: ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥 𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
36:: ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥 𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
37:36,35: (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
38:17,37: ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
39:: (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥 𝐴))
40:39: 𝑥 ∈ (𝐶𝐴) ↔ ¬ (𝑥𝐶 ¬ 𝑥𝐴))
41:: (¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴) ↔ (¬ 𝑥 𝐶𝑥𝐴))
42:40,41: 𝑥 ∈ (𝐶𝐴) ↔ (¬ 𝑥𝐶𝑥 𝐴))
43:: (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵 ))
44:43,42: ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴) ) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
45:: (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ( 𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)))
46:45,44: (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ( (𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
47:4,38: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ ((𝑥𝐴 𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
48:46,47: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴 𝐵) ∖ (𝐶𝐴)))
49:48: 𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ((𝐴𝐵) ∖ (𝐶𝐴)))
qed:49: (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶 𝐴))
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
undif3VD (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))

Proof of Theorem undif3VD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elun 4048 . . . . . 6 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
2 eldif 3871 . . . . . . 7 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
32orbi2i 907 . . . . . 6 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
41, 3bitri 276 . . . . 5 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
5 idn1 40460 . . . . . . . . . 10 (   𝑥𝐴   ▶   𝑥𝐴   )
6 orc 862 . . . . . . . . . 10 (𝑥𝐴 → (𝑥𝐴𝑥𝐵))
75, 6e1a 40513 . . . . . . . . 9 (   𝑥𝐴   ▶   (𝑥𝐴𝑥𝐵)   )
8 olc 863 . . . . . . . . . 10 (𝑥𝐴 → (¬ 𝑥𝐶𝑥𝐴))
95, 8e1a 40513 . . . . . . . . 9 (   𝑥𝐴   ▶   𝑥𝐶𝑥𝐴)   )
10 pm3.2 470 . . . . . . . . 9 ((𝑥𝐴𝑥𝐵) → ((¬ 𝑥𝐶𝑥𝐴) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))))
117, 9, 10e11 40574 . . . . . . . 8 (   𝑥𝐴   ▶   ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))   )
1211in1 40457 . . . . . . 7 (𝑥𝐴 → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
13 idn1 40460 . . . . . . . . . . 11 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   )
14 simpl 483 . . . . . . . . . . 11 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → 𝑥𝐵)
1513, 14e1a 40513 . . . . . . . . . 10 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐵   )
16 olc 863 . . . . . . . . . 10 (𝑥𝐵 → (𝑥𝐴𝑥𝐵))
1715, 16e1a 40513 . . . . . . . . 9 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴𝑥𝐵)   )
18 simpr 485 . . . . . . . . . . 11 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → ¬ 𝑥𝐶)
1913, 18e1a 40513 . . . . . . . . . 10 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶    ¬ 𝑥𝐶   )
20 orc 862 . . . . . . . . . 10 𝑥𝐶 → (¬ 𝑥𝐶𝑥𝐴))
2119, 20e1a 40513 . . . . . . . . 9 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐶𝑥𝐴)   )
2217, 21, 10e11 40574 . . . . . . . 8 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))   )
2322in1 40457 . . . . . . 7 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
2412, 23jaoi 852 . . . . . 6 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
25 anddi 1005 . . . . . . . 8 (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)) ↔ (((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))))
2625bicomi 225 . . . . . . 7 ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
27 idn1 40460 . . . . . . . . . . 11 (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   )
28 simpl 483 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → 𝑥𝐴)
2928orcd 870 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
3027, 29e1a 40513 . . . . . . . . . 10 (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
3130in1 40457 . . . . . . . . 9 ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
32 idn1 40460 . . . . . . . . . . . 12 (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴𝑥𝐴)   )
33 simpl 483 . . . . . . . . . . . 12 ((𝑥𝐴𝑥𝐴) → 𝑥𝐴)
3432, 33e1a 40513 . . . . . . . . . . 11 (   (𝑥𝐴𝑥𝐴)   ▶   𝑥𝐴   )
35 orc 862 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
3634, 35e1a 40513 . . . . . . . . . 10 (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
3736in1 40457 . . . . . . . . 9 ((𝑥𝐴𝑥𝐴) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
3831, 37jaoi 852 . . . . . . . 8 (((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
39 olc 863 . . . . . . . . . . 11 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4013, 39e1a 40513 . . . . . . . . . 10 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
4140in1 40457 . . . . . . . . 9 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
42 idn1 40460 . . . . . . . . . . . 12 (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐵𝑥𝐴)   )
43 simpr 485 . . . . . . . . . . . 12 ((𝑥𝐵𝑥𝐴) → 𝑥𝐴)
4442, 43e1a 40513 . . . . . . . . . . 11 (   (𝑥𝐵𝑥𝐴)   ▶   𝑥𝐴   )
4544, 35e1a 40513 . . . . . . . . . 10 (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
4645in1 40457 . . . . . . . . 9 ((𝑥𝐵𝑥𝐴) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4741, 46jaoi 852 . . . . . . . 8 (((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4838, 47jaoi 852 . . . . . . 7 ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4926, 48sylbir 236 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
5024, 49impbii 210 . . . . 5 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
514, 50bitri 276 . . . 4 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
52 eldif 3871 . . . . 5 (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)))
53 elun 4048 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
54 eldif 3871 . . . . . . . 8 (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
5554notbii 321 . . . . . . 7 𝑥 ∈ (𝐶𝐴) ↔ ¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
56 pm4.53 980 . . . . . . 7 (¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴) ↔ (¬ 𝑥𝐶𝑥𝐴))
5755, 56bitri 276 . . . . . 6 𝑥 ∈ (𝐶𝐴) ↔ (¬ 𝑥𝐶𝑥𝐴))
5853, 57anbi12i 626 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
5952, 58bitri 276 . . . 4 (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
6051, 59bitr4i 279 . . 3 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)))
6160ax-gen 1778 . 2 𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)))
62 dfcleq 2788 . . 3 ((𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴))))
6362biimpri 229 . 2 (∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴))) → (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴)))
6461, 63e0a 40658 1 (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wa 396  wo 842  wal 1520   = wceq 1522  wcel 2080  cdif 3858  cun 3859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-ext 2768
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-v 3438  df-dif 3864  df-un 3866  df-vd1 40456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator