Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  undif3VD Structured version   Visualization version   GIF version

Theorem undif3VD 42391
Description: The first equality of Exercise 13 of [TakeutiZaring] p. 22. Virtual deduction proof of undif3 4221. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. undif3 4221 is undif3VD 42391 without virtual deductions and was automatically derived from undif3VD 42391.
1:: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴 𝑥 ∈ (𝐵𝐶)))
2:: (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥 𝐶))
3:2: ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥 𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4:1,3: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
5:: (   𝑥𝐴   ▶   𝑥𝐴   )
6:5: (   𝑥𝐴   ▶   (𝑥𝐴𝑥𝐵)   )
7:5: (   𝑥𝐴   ▶   𝑥𝐶𝑥𝐴)   )
8:6,7: (   𝑥𝐴   ▶   ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶𝑥𝐴))   )
9:8: (𝑥𝐴 → ((𝑥𝐴𝑥𝐵) ∧ ( ¬ 𝑥𝐶𝑥𝐴)))
10:: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   )
11:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐵   )
12:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   ¬ 𝑥𝐶    )
13:11: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 𝑥𝐵)   )
14:12: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥 𝐶𝑥𝐴)   )
15:13,14: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   ((𝑥 𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))   )
16:15: ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → ((𝑥𝐴 𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
17:9,16: ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
18:: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   )
19:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐴   )
20:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   ¬ 𝑥𝐶    )
21:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
22:21: ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
23:: (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴 𝑥𝐴)   )
24:23: (   (𝑥𝐴𝑥𝐴)   ▶   𝑥𝐴   )
25:24: (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
26:25: ((𝑥𝐴𝑥𝐴) → (𝑥𝐴 ∨ ( 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
27:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
28:27: ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
29:: (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐵 𝑥𝐴)   )
30:29: (   (𝑥𝐵𝑥𝐴)   ▶   𝑥𝐴   )
31:30: (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
32:31: ((𝑥𝐵𝑥𝐴) → (𝑥𝐴 ∨ ( 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
33:22,26: (((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
34:28,32: (((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
35:33,34: ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥 𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
36:: ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥 𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
37:36,35: (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
38:17,37: ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
39:: (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥 𝐴))
40:39: 𝑥 ∈ (𝐶𝐴) ↔ ¬ (𝑥𝐶 ¬ 𝑥𝐴))
41:: (¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴) ↔ (¬ 𝑥 𝐶𝑥𝐴))
42:40,41: 𝑥 ∈ (𝐶𝐴) ↔ (¬ 𝑥𝐶𝑥 𝐴))
43:: (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵 ))
44:43,42: ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴) ) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
45:: (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ( 𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)))
46:45,44: (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ( (𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
47:4,38: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ ((𝑥𝐴 𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
48:46,47: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴 𝐵) ∖ (𝐶𝐴)))
49:48: 𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ((𝐴𝐵) ∖ (𝐶𝐴)))
qed:49: (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶 𝐴))
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
undif3VD (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))

Proof of Theorem undif3VD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elun 4079 . . . . . 6 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
2 eldif 3893 . . . . . . 7 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
32orbi2i 909 . . . . . 6 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
41, 3bitri 274 . . . . 5 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
5 idn1 42083 . . . . . . . . . 10 (   𝑥𝐴   ▶   𝑥𝐴   )
6 orc 863 . . . . . . . . . 10 (𝑥𝐴 → (𝑥𝐴𝑥𝐵))
75, 6e1a 42136 . . . . . . . . 9 (   𝑥𝐴   ▶   (𝑥𝐴𝑥𝐵)   )
8 olc 864 . . . . . . . . . 10 (𝑥𝐴 → (¬ 𝑥𝐶𝑥𝐴))
95, 8e1a 42136 . . . . . . . . 9 (   𝑥𝐴   ▶   𝑥𝐶𝑥𝐴)   )
10 pm3.2 469 . . . . . . . . 9 ((𝑥𝐴𝑥𝐵) → ((¬ 𝑥𝐶𝑥𝐴) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))))
117, 9, 10e11 42197 . . . . . . . 8 (   𝑥𝐴   ▶   ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))   )
1211in1 42080 . . . . . . 7 (𝑥𝐴 → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
13 idn1 42083 . . . . . . . . . . 11 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   )
14 simpl 482 . . . . . . . . . . 11 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → 𝑥𝐵)
1513, 14e1a 42136 . . . . . . . . . 10 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐵   )
16 olc 864 . . . . . . . . . 10 (𝑥𝐵 → (𝑥𝐴𝑥𝐵))
1715, 16e1a 42136 . . . . . . . . 9 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴𝑥𝐵)   )
18 simpr 484 . . . . . . . . . . 11 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → ¬ 𝑥𝐶)
1913, 18e1a 42136 . . . . . . . . . 10 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶    ¬ 𝑥𝐶   )
20 orc 863 . . . . . . . . . 10 𝑥𝐶 → (¬ 𝑥𝐶𝑥𝐴))
2119, 20e1a 42136 . . . . . . . . 9 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐶𝑥𝐴)   )
2217, 21, 10e11 42197 . . . . . . . 8 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))   )
2322in1 42080 . . . . . . 7 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
2412, 23jaoi 853 . . . . . 6 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
25 anddi 1007 . . . . . . . 8 (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)) ↔ (((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))))
2625bicomi 223 . . . . . . 7 ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
27 idn1 42083 . . . . . . . . . . 11 (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   )
28 simpl 482 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → 𝑥𝐴)
2928orcd 869 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
3027, 29e1a 42136 . . . . . . . . . 10 (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
3130in1 42080 . . . . . . . . 9 ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
32 idn1 42083 . . . . . . . . . . . 12 (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴𝑥𝐴)   )
33 simpl 482 . . . . . . . . . . . 12 ((𝑥𝐴𝑥𝐴) → 𝑥𝐴)
3432, 33e1a 42136 . . . . . . . . . . 11 (   (𝑥𝐴𝑥𝐴)   ▶   𝑥𝐴   )
35 orc 863 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
3634, 35e1a 42136 . . . . . . . . . 10 (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
3736in1 42080 . . . . . . . . 9 ((𝑥𝐴𝑥𝐴) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
3831, 37jaoi 853 . . . . . . . 8 (((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
39 olc 864 . . . . . . . . . . 11 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4013, 39e1a 42136 . . . . . . . . . 10 (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
4140in1 42080 . . . . . . . . 9 ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
42 idn1 42083 . . . . . . . . . . . 12 (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐵𝑥𝐴)   )
43 simpr 484 . . . . . . . . . . . 12 ((𝑥𝐵𝑥𝐴) → 𝑥𝐴)
4442, 43e1a 42136 . . . . . . . . . . 11 (   (𝑥𝐵𝑥𝐴)   ▶   𝑥𝐴   )
4544, 35e1a 42136 . . . . . . . . . 10 (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
4645in1 42080 . . . . . . . . 9 ((𝑥𝐵𝑥𝐴) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4741, 46jaoi 853 . . . . . . . 8 (((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4838, 47jaoi 853 . . . . . . 7 ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4926, 48sylbir 234 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
5024, 49impbii 208 . . . . 5 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
514, 50bitri 274 . . . 4 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
52 eldif 3893 . . . . 5 (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)))
53 elun 4079 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
54 eldif 3893 . . . . . . . 8 (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
5554notbii 319 . . . . . . 7 𝑥 ∈ (𝐶𝐴) ↔ ¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
56 pm4.53 982 . . . . . . 7 (¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴) ↔ (¬ 𝑥𝐶𝑥𝐴))
5755, 56bitri 274 . . . . . 6 𝑥 ∈ (𝐶𝐴) ↔ (¬ 𝑥𝐶𝑥𝐴))
5853, 57anbi12i 626 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
5952, 58bitri 274 . . . 4 (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
6051, 59bitr4i 277 . . 3 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)))
6160ax-gen 1799 . 2 𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)))
62 dfcleq 2731 . . 3 ((𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴))))
6362biimpri 227 . 2 (∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴))) → (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴)))
6461, 63e0a 42281 1 (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 843  wal 1537   = wceq 1539  wcel 2108  cdif 3880  cun 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-vd1 42079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator