MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undif3 Structured version   Visualization version   GIF version

Theorem undif3 4300
Description: An equality involving class union and class difference. The first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 17-Apr-2012.) (Proof shortened by JJ, 13-Jul-2021.)
Assertion
Ref Expression
undif3 (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))

Proof of Theorem undif3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elun 4153 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 pm4.53 988 . . . . 5 (¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴) ↔ (¬ 𝑥𝐶𝑥𝐴))
3 eldif 3961 . . . . 5 (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
42, 3xchnxbir 333 . . . 4 𝑥 ∈ (𝐶𝐴) ↔ (¬ 𝑥𝐶𝑥𝐴))
51, 4anbi12i 628 . . 3 ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
6 eldif 3961 . . 3 (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)))
7 elun 4153 . . . 4 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
8 eldif 3961 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
98orbi2i 913 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
10 ordi 1008 . . . . 5 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴 ∨ ¬ 𝑥𝐶)))
11 orcom 871 . . . . . 6 ((𝑥𝐴 ∨ ¬ 𝑥𝐶) ↔ (¬ 𝑥𝐶𝑥𝐴))
1211anbi2i 623 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴 ∨ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
1310, 12bitri 275 . . . 4 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
147, 9, 133bitri 297 . . 3 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
155, 6, 143bitr4ri 304 . 2 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)))
1615eqriv 2734 1 (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 848   = wceq 1540  wcel 2108  cdif 3948  cun 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-dif 3954  df-un 3956
This theorem is referenced by:  undifabs  4478  psdmullem  22169  llycmpkgen2  23558  hgt750lemb  34671  cantnfresb  43337
  Copyright terms: Public domain W3C validator