Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} = {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} |
2 | 1 | itg2val 24893 |
. 2
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
3 | | itg2addnclem.1 |
. . . 4
⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
4 | 3 | supeq1i 9206 |
. . 3
⊢ sup(𝐿, ℝ*, < ) =
sup({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
) |
5 | | xrltso 12875 |
. . . . 5
⊢ < Or
ℝ* |
6 | 5 | a1i 11 |
. . . 4
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ < Or ℝ*) |
7 | | simprr 770 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))) → 𝑥 = (∫1‘𝑓)) |
8 | | itg1cl 24849 |
. . . . . . . . . 10
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘𝑓) ∈ ℝ) |
9 | 8 | rexrd 11025 |
. . . . . . . . 9
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘𝑓) ∈
ℝ*) |
10 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))) → (∫1‘𝑓) ∈
ℝ*) |
11 | 7, 10 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))) → 𝑥 ∈ ℝ*) |
12 | 11 | rexlimiva 3210 |
. . . . . 6
⊢
(∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓)) → 𝑥 ∈ ℝ*) |
13 | 12 | abssi 4003 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} ⊆
ℝ* |
14 | | supxrcl 13049 |
. . . . 5
⊢ ({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} ⊆ ℝ* →
sup({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ) ∈
ℝ*) |
15 | 13, 14 | mp1i 13 |
. . . 4
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ) ∈
ℝ*) |
16 | | fveq1 6773 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑓 → (𝑔‘𝑧) = (𝑓‘𝑧)) |
17 | 16 | eqeq1d 2740 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑓 → ((𝑔‘𝑧) = 0 ↔ (𝑓‘𝑧) = 0)) |
18 | 16 | oveq1d 7290 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑓 → ((𝑔‘𝑧) + 𝑦) = ((𝑓‘𝑧) + 𝑦)) |
19 | 17, 18 | ifbieq2d 4485 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑓 → if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦)) = if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) |
20 | 19 | mpteq2dv 5176 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑓 → (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)))) |
21 | 20 | breq1d 5084 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → ((𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹)) |
22 | 21 | rexbidv 3226 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹)) |
23 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → (∫1‘𝑔) =
(∫1‘𝑓)) |
24 | 23 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → (𝑥 = (∫1‘𝑔) ↔ 𝑥 = (∫1‘𝑓))) |
25 | 22, 24 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑓 → ((∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)))) |
26 | 25 | cbvrexvw 3384 |
. . . . . . . . 9
⊢
(∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑓 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))) |
27 | | breq2 5078 |
. . . . . . . . . . . . . . . . 17
⊢ (0 =
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) → ((𝑓‘𝑧) ≤ 0 ↔ (𝑓‘𝑧) ≤ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)))) |
28 | | breq2 5078 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓‘𝑧) + 𝑦) = if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) → ((𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑦) ↔ (𝑓‘𝑧) ≤ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)))) |
29 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑧) = 0 → (𝑓‘𝑧) = 0) |
30 | | 0le0 12074 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ≤
0 |
31 | 29, 30 | eqbrtrdi 5113 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓‘𝑧) = 0 → (𝑓‘𝑧) ≤ 0) |
32 | 31 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) = 0) → (𝑓‘𝑧) ≤ 0) |
33 | | rpge0 12743 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℝ+
→ 0 ≤ 𝑦) |
34 | 33 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) → 0 ≤ 𝑦) |
35 | | i1ff 24840 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
36 | 35 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑧 ∈ ℝ)
→ (𝑓‘𝑧) ∈
ℝ) |
37 | 36 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℝ) |
38 | | rpre 12738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
39 | 38 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℝ) |
40 | 37, 39 | addge01d 11563 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) → (0 ≤ 𝑦 ↔ (𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑦))) |
41 | 34, 40 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑦)) |
42 | 41 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓‘𝑧) = 0) → (𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑦)) |
43 | 27, 28, 32, 42 | ifbothda 4497 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ≤ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) |
44 | 43 | adantlll 715 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ≤ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) |
45 | 35 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → 𝑓:ℝ⟶ℝ) |
46 | 45 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℝ) |
47 | 46 | rexrd 11025 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈
ℝ*) |
48 | | 0re 10977 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ |
49 | 38 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℝ) |
50 | 46, 49 | readdcld 11004 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) + 𝑦) ∈ ℝ) |
51 | | ifcl 4504 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℝ ∧ ((𝑓‘𝑧) + 𝑦) ∈ ℝ) → if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ∈ ℝ) |
52 | 48, 50, 51 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ∈ ℝ) |
53 | 52 | rexrd 11025 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ∈
ℝ*) |
54 | | iccssxr 13162 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0[,]+∞) ⊆ ℝ* |
55 | | fss 6617 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (0[,]+∞) ⊆ ℝ*) → 𝐹:ℝ⟶ℝ*) |
56 | 54, 55 | mpan2 688 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ 𝐹:ℝ⟶ℝ*) |
57 | 56 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → 𝐹:ℝ⟶ℝ*) |
58 | 57 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ∈
ℝ*) |
59 | | xrletr 12892 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓‘𝑧) ∈ ℝ* ∧ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ∈ ℝ* ∧ (𝐹‘𝑧) ∈ ℝ*) → (((𝑓‘𝑧) ≤ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ∧ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ≤ (𝐹‘𝑧)) → (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
60 | 47, 53, 58, 59 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) ≤ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ∧ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ≤ (𝐹‘𝑧)) → (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
61 | 44, 60 | mpand 692 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ≤ (𝐹‘𝑧) → (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
62 | 61 | ralimdva 3108 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → (∀𝑧 ∈ ℝ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ≤ (𝐹‘𝑧) → ∀𝑧 ∈ ℝ (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
63 | | reex 10962 |
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ V |
64 | 63 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → ℝ ∈ V) |
65 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)))) |
66 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ 𝐹:ℝ⟶(0[,]+∞)) |
67 | 66 | feqmptd 6837 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ 𝐹 = (𝑧 ∈ ℝ ↦ (𝐹‘𝑧))) |
68 | 67 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → 𝐹 = (𝑧 ∈ ℝ ↦ (𝐹‘𝑧))) |
69 | 64, 52, 58, 65, 68 | ofrfval2 7554 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → ((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ≤ (𝐹‘𝑧))) |
70 | 35 | feqmptd 6837 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 = (𝑧 ∈ ℝ ↦ (𝑓‘𝑧))) |
71 | 70 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → 𝑓 = (𝑧 ∈ ℝ ↦ (𝑓‘𝑧))) |
72 | 64, 46, 58, 71, 68 | ofrfval2 7554 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → (𝑓 ∘r ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
73 | 62, 69, 72 | 3imtr4d 294 |
. . . . . . . . . . . 12
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → ((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 → 𝑓 ∘r ≤ 𝐹)) |
74 | 73 | rexlimdva 3213 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) → (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 → 𝑓 ∘r ≤ 𝐹)) |
75 | 74 | anim1d 611 |
. . . . . . . . . 10
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) → ((∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) → (𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)))) |
76 | 75 | reximdva 3203 |
. . . . . . . . 9
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∃𝑓 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) → ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓)))) |
77 | 26, 76 | syl5bi 241 |
. . . . . . . 8
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) → ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓)))) |
78 | 77 | ss2abdv 3997 |
. . . . . . 7
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ {𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}) |
79 | 78 | sseld 3920 |
. . . . . 6
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} → 𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))})) |
80 | | simp3r 1201 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))) → 𝑥 = (∫1‘𝑓)) |
81 | 9 | 3ad2ant2 1133 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))) → (∫1‘𝑓) ∈
ℝ*) |
82 | 80, 81 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))) → 𝑥 ∈ ℝ*) |
83 | 82 | rexlimdv3a 3215 |
. . . . . . . . 9
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓)) → 𝑥 ∈
ℝ*)) |
84 | 83 | abssdv 4002 |
. . . . . . . 8
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ {𝑥 ∣
∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} ⊆
ℝ*) |
85 | | xrsupss 13043 |
. . . . . . . 8
⊢ ({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} ⊆ ℝ* →
∃𝑎 ∈
ℝ* (∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑠 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 < 𝑠))) |
86 | 84, 85 | syl 17 |
. . . . . . 7
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∃𝑎 ∈
ℝ* (∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑠 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 < 𝑠))) |
87 | 6, 86 | supub 9218 |
. . . . . 6
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} → ¬ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
< 𝑏)) |
88 | 79, 87 | syld 47 |
. . . . 5
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} → ¬ sup({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ) < 𝑏)) |
89 | 88 | imp 407 |
. . . 4
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}) → ¬ sup({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ) < 𝑏) |
90 | | supxrlub 13059 |
. . . . . . . 8
⊢ (({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} ⊆ ℝ* ∧ 𝑏 ∈ ℝ*)
→ (𝑏 < sup({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ) ↔
∃𝑠 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}𝑏 < 𝑠)) |
91 | 13, 90 | mpan 687 |
. . . . . . 7
⊢ (𝑏 ∈ ℝ*
→ (𝑏 < sup({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ) ↔
∃𝑠 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}𝑏 < 𝑠)) |
92 | 91 | adantl 482 |
. . . . . 6
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → (𝑏 < sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
↔ ∃𝑠 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}𝑏 < 𝑠)) |
93 | | simprrr 779 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) → 𝑠 = (∫1‘𝑓)) |
94 | 93 | breq2d 5086 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) → (𝑏 < 𝑠 ↔ 𝑏 < (∫1‘𝑓))) |
95 | | simplll 772 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) → 𝐹:ℝ⟶(0[,]+∞)) |
96 | | i1f0 24851 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℝ
× {0}) ∈ dom ∫1 |
97 | | 2rp 12735 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℝ+ |
98 | 97 | ne0ii 4271 |
. . . . . . . . . . . . . . . . . . . 20
⊢
ℝ+ ≠ ∅ |
99 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑧 ∈ ℝ)
→ (𝐹‘𝑧) ∈
(0[,]+∞)) |
100 | | elxrge0 13189 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹‘𝑧) ∈ (0[,]+∞) ↔ ((𝐹‘𝑧) ∈ ℝ* ∧ 0 ≤
(𝐹‘𝑧))) |
101 | 99, 100 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑧 ∈ ℝ)
→ ((𝐹‘𝑧) ∈ ℝ*
∧ 0 ≤ (𝐹‘𝑧))) |
102 | 101 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑧 ∈ ℝ)
→ 0 ≤ (𝐹‘𝑧)) |
103 | 102 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∀𝑧 ∈
ℝ 0 ≤ (𝐹‘𝑧)) |
104 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ℝ ∈ V) |
105 | | c0ex 10969 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ∈
V |
106 | 105 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑧 ∈ ℝ)
→ 0 ∈ V) |
107 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (𝑧 ∈ ℝ
↦ 0) = (𝑧 ∈
ℝ ↦ 0)) |
108 | 104, 106,
99, 107, 67 | ofrfval2 7554 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ((𝑧 ∈ ℝ
↦ 0) ∘r ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ 0 ≤ (𝐹‘𝑧))) |
109 | 103, 108 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (𝑧 ∈ ℝ
↦ 0) ∘r ≤ 𝐹) |
110 | 109 | ralrimivw 3104 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∀𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ 0) ∘r ≤ 𝐹) |
111 | | r19.2z 4425 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((ℝ+ ≠ ∅ ∧ ∀𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐹)
→ ∃𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ 0) ∘r ≤ 𝐹) |
112 | 98, 110, 111 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∃𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ 0) ∘r ≤ 𝐹) |
113 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔 = (ℝ × {0}) →
(∫1‘𝑔)
= (∫1‘(ℝ × {0}))) |
114 | | itg10 24852 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∫1‘(ℝ × {0})) = 0 |
115 | 113, 114 | eqtr2di 2795 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = (ℝ × {0}) →
0 = (∫1‘𝑔)) |
116 | 115 | biantrud 532 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (ℝ × {0}) →
(∃𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔)))) |
117 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑔 = (ℝ × {0}) →
(𝑔‘𝑧) = ((ℝ × {0})‘𝑧)) |
118 | 105 | fvconst2 7079 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ ℝ → ((ℝ
× {0})‘𝑧) =
0) |
119 | 117, 118 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔 = (ℝ × {0}) ∧
𝑧 ∈ ℝ) →
(𝑔‘𝑧) = 0) |
120 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔‘𝑧) = 0 → if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦)) = 0) |
121 | 119, 120 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑔 = (ℝ × {0}) ∧
𝑧 ∈ ℝ) →
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦)) = 0) |
122 | 121 | mpteq2dva 5174 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔 = (ℝ × {0}) →
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ 0)) |
123 | 122 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = (ℝ × {0}) →
((𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐹)) |
124 | 123 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (ℝ × {0}) →
(∃𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
0) ∘r ≤ 𝐹)) |
125 | 116, 124 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (ℝ × {0}) →
((∃𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔)) ↔ ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐹)) |
126 | 125 | rspcev 3561 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ℝ × {0}) ∈ dom ∫1 ∧ ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
0) ∘r ≤ 𝐹) → ∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔))) |
127 | 96, 112, 126 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔))) |
128 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = -∞ → 𝑏 = -∞) |
129 | | mnflt 12859 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℝ → -∞ < 0) |
130 | 48, 129 | mp1i 13 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = -∞ → -∞ <
0) |
131 | 128, 130 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = -∞ → 𝑏 < 0) |
132 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 0 → (𝑎 = (∫1‘𝑔) ↔ 0 =
(∫1‘𝑔))) |
133 | 132 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 0 → ((∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔)))) |
134 | 133 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 0 → (∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔)))) |
135 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 0 → (𝑏 < 𝑎 ↔ 𝑏 < 0)) |
136 | 134, 135 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 0 → ((∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎) ↔ (∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔)) ∧ 𝑏 < 0))) |
137 | 105, 136 | spcev 3545 |
. . . . . . . . . . . . . . . . . 18
⊢
((∃𝑔 ∈
dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔)) ∧ 𝑏 < 0) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
138 | 127, 131,
137 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 = -∞) →
∃𝑎(∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
139 | 95, 138 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 = -∞) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
140 | | simp-4r 781 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) → 𝑏 ∈ ℝ*) |
141 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → (∫1‘𝑓) ∈
ℝ) |
142 | 141 | ad3antlr 728 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) →
(∫1‘𝑓)
∈ ℝ) |
143 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) → 𝑏 ∈ ℝ*) |
144 | | ngtmnft 12900 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 ∈ ℝ*
→ (𝑏 = -∞ ↔
¬ -∞ < 𝑏)) |
145 | 144 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 ∈ ℝ*
→ (¬ -∞ < 𝑏 → 𝑏 = -∞)) |
146 | 145 | necon1ad 2960 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ ℝ*
→ (𝑏 ≠ -∞
→ -∞ < 𝑏)) |
147 | 146 | imp 407 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑏 ∈ ℝ*
∧ 𝑏 ≠ -∞)
→ -∞ < 𝑏) |
148 | 143, 147 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) → -∞ < 𝑏) |
149 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → 𝑏 ∈ ℝ*) |
150 | 9 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → (∫1‘𝑓) ∈
ℝ*) |
151 | 149, 150 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) → (𝑏 ∈ ℝ* ∧
(∫1‘𝑓)
∈ ℝ*)) |
152 | | xrltle 12883 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 ∈ ℝ*
∧ (∫1‘𝑓) ∈ ℝ*) → (𝑏 <
(∫1‘𝑓)
→ 𝑏 ≤
(∫1‘𝑓))) |
153 | 152 | imp 407 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑏 ∈ ℝ*
∧ (∫1‘𝑓) ∈ ℝ*) ∧ 𝑏 <
(∫1‘𝑓)) → 𝑏 ≤ (∫1‘𝑓)) |
154 | 151, 153 | sylan 580 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) → 𝑏 ≤ (∫1‘𝑓)) |
155 | 154 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) → 𝑏 ≤ (∫1‘𝑓)) |
156 | | xrre 12903 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ ℝ*
∧ (∫1‘𝑓) ∈ ℝ) ∧ (-∞ < 𝑏 ∧ 𝑏 ≤ (∫1‘𝑓))) → 𝑏 ∈ ℝ) |
157 | 140, 142,
148, 155, 156 | syl22anc 836 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) → 𝑏 ∈ ℝ) |
158 | 127 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) → ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔))) |
159 | | simplrl 774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) → 𝑏 <
(∫1‘𝑓)) |
160 | | simplrl 774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → 𝑓 ∈ dom
∫1) |
161 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ dom ∫1
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) → 𝑓 ∈ dom
∫1) |
162 | | cnvimass 5989 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (◡𝑓 “ (ran 𝑓 ∖ {0})) ⊆ dom 𝑓 |
163 | 162, 35 | fssdm 6620 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 ∈ dom ∫1
→ (◡𝑓 “ (ran 𝑓 ∖ {0})) ⊆
ℝ) |
164 | 163 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ dom ∫1
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) → (◡𝑓 “ (ran 𝑓 ∖ {0})) ⊆
ℝ) |
165 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ dom ∫1
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) →
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) |
166 | | fdm 6609 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑓:ℝ⟶ℝ →
dom 𝑓 =
ℝ) |
167 | 166 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓:ℝ⟶ℝ →
ℝ = dom 𝑓) |
168 | | ffun 6603 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑓:ℝ⟶ℝ →
Fun 𝑓) |
169 | | difpreima 6942 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (Fun
𝑓 → (◡𝑓 “ (ran 𝑓 ∖ {0})) = ((◡𝑓 “ ran 𝑓) ∖ (◡𝑓 “ {0}))) |
170 | 168, 169 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑓:ℝ⟶ℝ →
(◡𝑓 “ (ran 𝑓 ∖ {0})) = ((◡𝑓 “ ran 𝑓) ∖ (◡𝑓 “ {0}))) |
171 | | cnvimarndm 5990 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (◡𝑓 “ ran 𝑓) = dom 𝑓 |
172 | 171 | difeq1i 4053 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((◡𝑓 “ ran 𝑓) ∖ (◡𝑓 “ {0})) = (dom 𝑓 ∖ (◡𝑓 “ {0})) |
173 | 170, 172 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓:ℝ⟶ℝ →
(◡𝑓 “ (ran 𝑓 ∖ {0})) = (dom 𝑓 ∖ (◡𝑓 “ {0}))) |
174 | 167, 173 | difeq12d 4058 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓:ℝ⟶ℝ →
(ℝ ∖ (◡𝑓 “ (ran 𝑓 ∖ {0}))) = (dom 𝑓 ∖ (dom 𝑓 ∖ (◡𝑓 “ {0})))) |
175 | | cnvimass 5989 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (◡𝑓 “ {0}) ⊆ dom 𝑓 |
176 | | dfss4 4192 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((◡𝑓 “ {0}) ⊆ dom 𝑓 ↔ (dom 𝑓 ∖ (dom 𝑓 ∖ (◡𝑓 “ {0}))) = (◡𝑓 “ {0})) |
177 | 175, 176 | mpbi 229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (dom
𝑓 ∖ (dom 𝑓 ∖ (◡𝑓 “ {0}))) = (◡𝑓 “ {0}) |
178 | 174, 177 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓:ℝ⟶ℝ →
(ℝ ∖ (◡𝑓 “ (ran 𝑓 ∖ {0}))) = (◡𝑓 “ {0})) |
179 | 178 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (ℝ ∖
(◡𝑓 “ (ran 𝑓 ∖ {0}))) ↔ 𝑧 ∈ (◡𝑓 “ {0}))) |
180 | | ffn 6600 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓:ℝ⟶ℝ →
𝑓 Fn
ℝ) |
181 | | fniniseg 6937 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 Fn ℝ → (𝑧 ∈ (◡𝑓 “ {0}) ↔ (𝑧 ∈ ℝ ∧ (𝑓‘𝑧) = 0))) |
182 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑧 ∈ ℝ ∧ (𝑓‘𝑧) = 0) → (𝑓‘𝑧) = 0) |
183 | 181, 182 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓 Fn ℝ → (𝑧 ∈ (◡𝑓 “ {0}) → (𝑓‘𝑧) = 0)) |
184 | 180, 183 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (◡𝑓 “ {0}) → (𝑓‘𝑧) = 0)) |
185 | 179, 184 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (ℝ ∖
(◡𝑓 “ (ran 𝑓 ∖ {0}))) → (𝑓‘𝑧) = 0)) |
186 | 35, 185 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓 ∈ dom ∫1
→ (𝑧 ∈ (ℝ
∖ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → (𝑓‘𝑧) = 0)) |
187 | 186 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑧 ∈ (ℝ
∖ (◡𝑓 “ (ran 𝑓 ∖ {0})))) → (𝑓‘𝑧) = 0) |
188 | 187 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) ∧ 𝑧 ∈ (ℝ ∖ (◡𝑓 “ (ran 𝑓 ∖ {0})))) → (𝑓‘𝑧) = 0) |
189 | 161, 164,
165, 188 | itg10a 24875 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 ∈ dom ∫1
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) →
(∫1‘𝑓)
= 0) |
190 | 160, 189 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) →
(∫1‘𝑓)
= 0) |
191 | 159, 190 | breqtrd 5100 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) → 𝑏 < 0) |
192 | 158, 191,
137 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
193 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) → 𝑓 ∈ dom
∫1) |
194 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ)
→ 𝑏 ∈
ℝ) |
195 | 193, 194 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → (𝑓 ∈ dom ∫1 ∧ 𝑏 ∈
ℝ)) |
196 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ℝ ∈
V) |
197 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓‘𝑢) ∈ V |
198 | 197 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (𝑓‘𝑢) ∈ V) |
199 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈ V |
200 | 199, 105 | ifex 4509 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0) ∈
V |
201 | 200 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0) ∈
V) |
202 | 35 | feqmptd 6837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 = (𝑢 ∈ ℝ ↦ (𝑓‘𝑢))) |
203 | 202 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑓 = (𝑢 ∈ ℝ ↦ (𝑓‘𝑢))) |
204 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) |
205 | 196, 198,
201, 203, 204 | offval2 7553 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑢 ∈ ℝ ↦
if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) = (𝑢 ∈ ℝ ↦ ((𝑓‘𝑢) − if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) |
206 | | ovif2 7373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓‘𝑢) − if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) = if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑢) − 0)) |
207 | 171, 166 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑓:ℝ⟶ℝ →
(◡𝑓 “ ran 𝑓) = ℝ) |
208 | 207 | difeq1d 4056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑓:ℝ⟶ℝ →
((◡𝑓 “ ran 𝑓) ∖ (◡𝑓 “ {0})) = (ℝ ∖ (◡𝑓 “ {0}))) |
209 | 170, 208 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑓:ℝ⟶ℝ →
(◡𝑓 “ (ran 𝑓 ∖ {0})) = (ℝ ∖ (◡𝑓 “ {0}))) |
210 | 209 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑓:ℝ⟶ℝ →
(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ 𝑢 ∈ (ℝ ∖ (◡𝑓 “ {0})))) |
211 | 35, 210 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑓 ∈ dom ∫1
→ (𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ 𝑢 ∈ (ℝ ∖ (◡𝑓 “ {0})))) |
212 | 211 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ 𝑢 ∈ (ℝ ∖ (◡𝑓 “ {0})))) |
213 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈
ℝ) |
214 | 213 | biantrurd 533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (¬
𝑢 ∈ (◡𝑓 “ {0}) ↔ (𝑢 ∈ ℝ ∧ ¬ 𝑢 ∈ (◡𝑓 “ {0})))) |
215 | | eldif 3897 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑢 ∈ (ℝ ∖ (◡𝑓 “ {0})) ↔ (𝑢 ∈ ℝ ∧ ¬ 𝑢 ∈ (◡𝑓 “ {0}))) |
216 | 214, 215 | bitr4di 289 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (¬
𝑢 ∈ (◡𝑓 “ {0}) ↔ 𝑢 ∈ (ℝ ∖ (◡𝑓 “ {0})))) |
217 | 212, 216 | bitr4d 281 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ ¬ 𝑢 ∈ (◡𝑓 “ {0}))) |
218 | 217 | con2bid 355 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (𝑢 ∈ (◡𝑓 “ {0}) ↔ ¬ 𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})))) |
219 | | fniniseg 6937 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑓 Fn ℝ → (𝑢 ∈ (◡𝑓 “ {0}) ↔ (𝑢 ∈ ℝ ∧ (𝑓‘𝑢) = 0))) |
220 | 35, 180, 219 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑓 ∈ dom ∫1
→ (𝑢 ∈ (◡𝑓 “ {0}) ↔ (𝑢 ∈ ℝ ∧ (𝑓‘𝑢) = 0))) |
221 | 220 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (𝑢 ∈ (◡𝑓 “ {0}) ↔ (𝑢 ∈ ℝ ∧ (𝑓‘𝑢) = 0))) |
222 | 218, 221 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (¬
𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ (𝑢 ∈ ℝ ∧ (𝑓‘𝑢) = 0))) |
223 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑓‘𝑢) = 0 → ((𝑓‘𝑢) − 0) = (0 −
0)) |
224 | | 0m0e0 12093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (0
− 0) = 0 |
225 | 223, 224 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑓‘𝑢) = 0 → ((𝑓‘𝑢) − 0) = 0) |
226 | 225 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑢 ∈ ℝ ∧ (𝑓‘𝑢) = 0) → ((𝑓‘𝑢) − 0) = 0) |
227 | 222, 226 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (¬
𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → ((𝑓‘𝑢) − 0) = 0)) |
228 | 227 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) ∧ ¬
𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑢) − 0) = 0) |
229 | 228 | ifeq2da 4491 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑢) − 0)) = if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
230 | 206, 229 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → ((𝑓‘𝑢) − if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) = if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
231 | 230 | mpteq2dva 5174 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦ ((𝑓‘𝑢) − if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
232 | 205, 231 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑢 ∈ ℝ ↦
if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
233 | | simpll 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑓 ∈ dom
∫1) |
234 | 199 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈ V) |
235 | | 1ex 10971 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 1 ∈
V |
236 | 235, 105 | ifex 4509 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0) ∈
V |
237 | 236 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0) ∈
V) |
238 | | fconstmpt 5649 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) = (𝑢 ∈ ℝ ↦
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) |
239 | 238 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) = (𝑢 ∈ ℝ ↦
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
240 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) |
241 | 196, 234,
237, 239, 240 | offval2 7553 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑢 ∈ ℝ
↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (𝑢 ∈ ℝ ↦
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) |
242 | | ovif2 7373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 1),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ·
0)) |
243 | | resubcl 11285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((∫1‘𝑓) ∈ ℝ ∧ 𝑏 ∈ ℝ) →
((∫1‘𝑓) − 𝑏) ∈ ℝ) |
244 | 8, 243 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((∫1‘𝑓) − 𝑏) ∈ ℝ) |
245 | 244 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((∫1‘𝑓) − 𝑏) ∈ ℝ) |
246 | | 2re 12047 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ 2 ∈
ℝ |
247 | | i1fima 24842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑓 ∈ dom ∫1
→ (◡𝑓 “ (ran 𝑓 ∖ {0})) ∈ dom
vol) |
248 | | mblvol 24694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((◡𝑓 “ (ran 𝑓 ∖ {0})) ∈ dom vol →
(vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
249 | 247, 248 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑓 ∈ dom ∫1
→ (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
250 | | neldifsn 4725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ¬ 0
∈ (ran 𝑓 ∖
{0}) |
251 | | i1fima2 24843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑓 ∈ dom ∫1
∧ ¬ 0 ∈ (ran 𝑓
∖ {0})) → (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℝ) |
252 | 250, 251 | mpan2 688 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑓 ∈ dom ∫1
→ (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℝ) |
253 | 249, 252 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑓 ∈ dom ∫1
→ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℝ) |
254 | | remulcl 10956 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((2
∈ ℝ ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ) → (2
· (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℝ) |
255 | 246, 253,
254 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑓 ∈ dom ∫1
→ (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℝ) |
256 | 255 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℝ) |
257 | | 2cnd 12051 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 2 ∈
ℂ) |
258 | 253 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℝ) |
259 | 258 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℂ) |
260 | | 2ne0 12077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ 2 ≠
0 |
261 | 260 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 2 ≠
0) |
262 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) |
263 | 257, 259,
261, 262 | mulne0d 11627 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ≠ 0) |
264 | 245, 256,
263 | redivcld 11803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℝ) |
265 | 264 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℂ) |
266 | 265 | mulid1d 10992 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 1) =
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) |
267 | 265 | mul01d 11174 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 0) =
0) |
268 | 266, 267 | ifeq12d 4480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 1),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 0)) = if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) |
269 | 242, 268 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) |
270 | 269 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) |
271 | 241, 270 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑢 ∈ ℝ
↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) |
272 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) |
273 | 272 | i1f1 24854 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((◡𝑓 “ (ran 𝑓 ∖ {0})) ∈ dom vol ∧
(vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ) → (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) ∈ dom
∫1) |
274 | 247, 252,
273 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓 ∈ dom ∫1
→ (𝑢 ∈ ℝ
↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) ∈ dom
∫1) |
275 | 274 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) ∈ dom
∫1) |
276 | 275, 264 | i1fmulc 24868 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑢 ∈ ℝ
↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) ∈ dom
∫1) |
277 | 271, 276 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈ dom
∫1) |
278 | | i1fsub 24873 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑢 ∈ ℝ
↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈ dom
∫1) → (𝑓 ∘f − (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1) |
279 | 233, 277,
278 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑢 ∈ ℝ ↦
if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1) |
280 | 232, 279 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1) |
281 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
282 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
283 | 282 | breq2d 5086 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → (0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ 0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) |
284 | 283, 282 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) = if(0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
285 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
286 | 284, 285 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) = ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
287 | 281, 286 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0)) |
288 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) |
289 | | ianor 979 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) ↔ (¬ 0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∨ ¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})))) |
290 | 283 | ifbid 4482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) = if(0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0)) |
291 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
292 | 290, 291 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
293 | 292 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0)) |
294 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) |
295 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 0 =
0 |
296 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) → (if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0 ↔ if(0 ≤
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0)) |
297 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (0 = if(0
≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) → (0 = 0
↔ if(0 ≤ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0)) |
298 | 296, 297 | ifboth 4498 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0 ∧ 0 = 0)
→ if(0 ≤ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
299 | 294, 295,
298 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
300 | 293, 299 | pm2.61d1 180 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
301 | 300, 299 | jaoi 854 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∨ ¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
302 | 289, 301 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
303 | 288, 302 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0)) |
304 | 287, 303 | pm2.61i 182 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) |
305 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 = 𝑧 → (𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})))) |
306 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑢 = 𝑧 → (𝑓‘𝑢) = (𝑓‘𝑧)) |
307 | 306 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 = 𝑧 → ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
308 | 305, 307 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑢 = 𝑧 → if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
309 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
310 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∈ V |
311 | 310, 105 | ifex 4509 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ∈
V |
312 | 308, 309,
311 | fvmpt 6875 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 ∈ ℝ → ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧) = if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
313 | 312 | breq2d 5086 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ ℝ → (0 ≤
((𝑢 ∈ ℝ ↦
if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧) ↔ 0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
314 | 313, 312 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ ℝ → if(0 ≤
((𝑢 ∈ ℝ ↦
if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧), ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧), 0) = if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0)) |
315 | 304, 314 | eqtr4id 2797 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ ℝ → if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(0 ≤ ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧), ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧), 0)) |
316 | 315 | mpteq2ia 5177 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) = (𝑧 ∈ ℝ ↦ if(0 ≤ ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧), ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧), 0)) |
317 | 316 | i1fpos 24871 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1 → (𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1) |
318 | 280, 317 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1) |
319 | 195, 318 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1) |
320 | 195, 264 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℝ) |
321 | 8 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) → (∫1‘𝑓) ∈
ℝ) |
322 | 321, 194,
243 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) →
((∫1‘𝑓) − 𝑏) ∈ ℝ) |
323 | 322 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((∫1‘𝑓) − 𝑏) ∈ ℝ) |
324 | 255 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℝ) |
325 | 324 | ad3antlr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℝ) |
326 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → 𝑏 < (∫1‘𝑓)) |
327 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → 𝑏 ∈ ℝ) |
328 | 141 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) →
(∫1‘𝑓)
∈ ℝ) |
329 | 327, 328 | posdifd 11562 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → (𝑏 < (∫1‘𝑓) ↔ 0 <
((∫1‘𝑓) − 𝑏))) |
330 | 326, 329 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → 0 <
((∫1‘𝑓) − 𝑏)) |
331 | 330 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 0 <
((∫1‘𝑓) − 𝑏)) |
332 | 253 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℝ) |
333 | 332 | ad3antlr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℝ) |
334 | | mblss 24695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((◡𝑓 “ (ran 𝑓 ∖ {0})) ∈ dom vol → (◡𝑓 “ (ran 𝑓 ∖ {0})) ⊆
ℝ) |
335 | | ovolge0 24645 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((◡𝑓 “ (ran 𝑓 ∖ {0})) ⊆ ℝ → 0 ≤
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
336 | 247, 334,
335 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 ∈ dom ∫1
→ 0 ≤ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
337 | | ltlen 11076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((0
∈ ℝ ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ) → (0
< (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ↔ (0 ≤
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0))) |
338 | 48, 253, 337 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 ∈ dom ∫1
→ (0 < (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ↔ (0 ≤
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0))) |
339 | 338 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 ∈ dom ∫1
→ ((0 ≤ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
340 | 336, 339 | mpand 692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓 ∈ dom ∫1
→ ((vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0 → 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
341 | 340 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) → ((vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0 → 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
342 | 341 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
343 | 342 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
344 | | 2pos 12076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 0 <
2 |
345 | | mulgt0 11052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((2
∈ ℝ ∧ 0 < 2) ∧ ((vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ ∧ 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) → 0 < (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
346 | 246, 344,
345 | mpanl12 699 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ ∧ 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) → 0 < (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
347 | 333, 343,
346 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 0 < (2
· (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
348 | 323, 325,
331, 347 | divgt0d 11910 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 0 <
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) |
349 | 320, 348 | elrpd 12769 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℝ+) |
350 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → 𝑓 ∘r ≤ 𝐹) |
351 | 350 | ad3antlr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑓 ∘r ≤ 𝐹) |
352 | | ffn 6600 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ 𝐹 Fn
ℝ) |
353 | 35, 180 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 Fn
ℝ) |
354 | 353 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → 𝑓 Fn ℝ) |
355 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐹 Fn ℝ ∧ 𝑓 Fn ℝ) → 𝑓 Fn ℝ) |
356 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐹 Fn ℝ ∧ 𝑓 Fn ℝ) → 𝐹 Fn ℝ) |
357 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐹 Fn ℝ ∧ 𝑓 Fn ℝ) → ℝ
∈ V) |
358 | | inidm 4152 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (ℝ
∩ ℝ) = ℝ |
359 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐹 Fn ℝ ∧ 𝑓 Fn ℝ) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) = (𝑓‘𝑧)) |
360 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐹 Fn ℝ ∧ 𝑓 Fn ℝ) ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
361 | 355, 356,
357, 357, 358, 359, 360 | ofrfval 7543 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹 Fn ℝ ∧ 𝑓 Fn ℝ) → (𝑓 ∘r ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
362 | 352, 354,
361 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) → (𝑓 ∘r ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
363 | 362 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘r ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
364 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → 𝑓 ∈ dom
∫1) |
365 | 364 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) → (𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom
∫1)) |
366 | 365, 194 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈
ℝ)) |
367 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (0 =
if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → (0 ≤ (𝐹‘𝑧) ↔ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
368 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧) ↔ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
369 | | simplll 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝐹:ℝ⟶(0[,]+∞)) |
370 | 369 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ∈ (0[,]+∞)) |
371 | 370, 100 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧) ∈ ℝ* ∧ 0 ≤
(𝐹‘𝑧))) |
372 | 371 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → 0 ≤
(𝐹‘𝑧)) |
373 | 372 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) ∧ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) → 0 ≤
(𝐹‘𝑧)) |
374 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
375 | 374 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) → ((((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧) ↔ (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧))) |
376 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (0 =
if((0 ≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) → (0 +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
377 | 376 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (0 =
if((0 ≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) → ((0 +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧) ↔ (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧))) |
378 | 35 | ad3antlr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑓:ℝ⟶ℝ) |
379 | 378 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℝ) |
380 | 379 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℂ) |
381 | 244 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((∫1‘𝑓) − 𝑏) ∈ ℂ) |
382 | 381 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((∫1‘𝑓) − 𝑏) ∈ ℂ) |
383 | 255 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑓 ∈ dom ∫1
→ (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℂ) |
384 | 383 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℂ) |
385 | 382, 384,
263 | divcld 11751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℂ) |
386 | 385 | adantlll 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℂ) |
387 | 386 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℂ) |
388 | 380, 387 | npcand 11336 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = (𝑓‘𝑧)) |
389 | 388 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = (𝑓‘𝑧)) |
390 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) → (𝑓‘𝑧) ≤ (𝐹‘𝑧)) |
391 | 389, 390 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧)) |
392 | 391 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) ∧ ¬ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) ∧ (0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})))) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧)) |
393 | 288 | pm2.24d 151 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → (¬ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0 → (0 +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧))) |
394 | 393 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((¬
if((0 ≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0 ∧ ¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})))) → (0 +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧)) |
395 | 394 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) ∧ ¬ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) ∧ ¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})))) → (0 +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧)) |
396 | 375, 377,
392, 395 | ifbothda 4497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) ∧ ¬ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) → (if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧)) |
397 | 367, 368,
373, 396 | ifbothda 4497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) → if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧)) |
398 | 397 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) ≤ (𝐹‘𝑧) → if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
399 | 366, 398 | sylanl1 677 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) ≤ (𝐹‘𝑧) → if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
400 | 399 | ralimdva 3108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (∀𝑧 ∈ ℝ (𝑓‘𝑧) ≤ (𝐹‘𝑧) → ∀𝑧 ∈ ℝ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
401 | 363, 400 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘r ≤ 𝐹 → ∀𝑧 ∈ ℝ if(if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
402 | 351, 401 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ∀𝑧 ∈ ℝ if(if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧)) |
403 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∈ V |
404 | 105, 403 | ifex 4509 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ if(if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ∈ V |
405 | 404 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑧 ∈ ℝ)
→ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ∈
V) |
406 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (𝑧 ∈ ℝ
↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) = (𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))))) |
407 | 104, 405,
99, 406, 67 | ofrfval2 7554 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ((𝑧 ∈ ℝ
↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) ∘r ≤
𝐹 ↔ ∀𝑧 ∈ ℝ if(if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
408 | 407 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((𝑧 ∈ ℝ ↦ if(if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) ∘r ≤
𝐹 ↔ ∀𝑧 ∈ ℝ if(if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
409 | 402, 408 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if(if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) ∘r ≤
𝐹) |
410 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 =
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) → (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦) = (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
411 | 410 | ifeq2d 4479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 =
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) → if(if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦)) = if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) |
412 | 411 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 =
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) → (𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))))) |
413 | 412 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 =
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) → ((𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹 ↔ (𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) ∘r ≤
𝐹)) |
414 | 413 | rspcev 3561 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈ ℝ+
∧ (𝑧 ∈ ℝ
↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) ∘r ≤
𝐹) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹) |
415 | 349, 409,
414 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹) |
416 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) = 𝑔 → (∫1‘(𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)) |
417 | 416 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) →
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)) |
418 | 417 | biantrud 532 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) → (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)))) |
419 | | nfmpt1 5182 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
Ⅎ𝑧(𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
420 | 419 | nfeq2 2924 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑧 𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
421 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) → (𝑔‘𝑧) = ((𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧)) |
422 | 310, 105 | ifex 4509 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ∈
V |
423 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
424 | 423 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑧 ∈ ℝ ∧ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ∈ V) →
((𝑧 ∈ ℝ ↦
if((0 ≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧) = if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
425 | 422, 424 | mpan2 688 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 ∈ ℝ → ((𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧) = if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
426 | 421, 425 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∧ 𝑧 ∈ ℝ) → (𝑔‘𝑧) = if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
427 | 426 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∧ 𝑧 ∈ ℝ) → ((𝑔‘𝑧) = 0 ↔ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0)) |
428 | 426 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∧ 𝑧 ∈ ℝ) → ((𝑔‘𝑧) + 𝑦) = (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦)) |
429 | 427, 428 | ifbieq2d 4485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∧ 𝑧 ∈ ℝ) →
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦)) = if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) |
430 | 420, 429 | mpteq2da 5172 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) → (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦)))) |
431 | 430 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) → ((𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ (𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹)) |
432 | 431 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) → (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹)) |
433 | 418, 432 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) → ((∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)) ↔ ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹)) |
434 | 433 | rspcev 3561 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1 ∧ ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹) → ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔))) |
435 | 319, 415,
434 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔))) |
436 | | simplrr 775 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 ∈
ℝ) |
437 | 199 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈ V) |
438 | 235, 105 | ifex 4509 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0) ∈
V |
439 | 438 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0) ∈
V) |
440 | | fconstmpt 5649 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) = (𝑧 ∈ ℝ ↦
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) |
441 | 440 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) = (𝑧 ∈ ℝ ↦
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
442 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) |
443 | 196, 437,
439, 441, 442 | offval2 7553 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (𝑧 ∈ ℝ ↦
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) |
444 | | ovif2 7373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 1),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ·
0)) |
445 | 266, 267 | ifeq12d 4480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 1),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 0)) = if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) |
446 | 444, 445 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) |
447 | 446 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) |
448 | 443, 447 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) |
449 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) |
450 | 449 | i1f1 24854 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((◡𝑓 “ (ran 𝑓 ∖ {0})) ∈ dom vol ∧
(vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) ∈ dom
∫1) |
451 | 247, 252,
450 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 ∈ dom ∫1
→ (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) ∈ dom
∫1) |
452 | 451 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) ∈ dom
∫1) |
453 | 452, 264 | i1fmulc 24868 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) ∈ dom
∫1) |
454 | 448, 453 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈ dom
∫1) |
455 | | i1fsub 24873 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈ dom
∫1) → (𝑓 ∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1) |
456 | 233, 454,
455 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1) |
457 | | itg1cl 24849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1 → (∫1‘(𝑓 ∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) ∈
ℝ) |
458 | 456, 457 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) ∈
ℝ) |
459 | 458 | adantlrl 717 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) ∈
ℝ) |
460 | 318 | adantlrl 717 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1) |
461 | | itg1cl 24849 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1 → (∫1‘(𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) ∈
ℝ) |
462 | 460, 461 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) ∈
ℝ) |
463 | | simplrl 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 <
(∫1‘𝑓)) |
464 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ 𝑏 ∈
ℝ) |
465 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ (∫1‘𝑓) ∈ ℝ) |
466 | 97 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ 2 ∈ ℝ+) |
467 | 464, 465,
466 | ltdiv1d 12817 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ (𝑏 <
(∫1‘𝑓)
↔ (𝑏 / 2) <
((∫1‘𝑓) / 2))) |
468 | | recn 10961 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 ∈ ℝ → 𝑏 ∈
ℂ) |
469 | 468 | 2halvesd 12219 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑏 ∈ ℝ → ((𝑏 / 2) + (𝑏 / 2)) = 𝑏) |
470 | 469 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑏 ∈ ℝ → (((𝑏 / 2) + (𝑏 / 2)) − (𝑏 / 2)) = (𝑏 − (𝑏 / 2))) |
471 | 468 | halfcld 12218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑏 ∈ ℝ → (𝑏 / 2) ∈
ℂ) |
472 | 471, 471 | pncand 11333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑏 ∈ ℝ → (((𝑏 / 2) + (𝑏 / 2)) − (𝑏 / 2)) = (𝑏 / 2)) |
473 | 470, 472 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ∈ ℝ → (𝑏 − (𝑏 / 2)) = (𝑏 / 2)) |
474 | 473 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑏 ∈ ℝ → ((𝑏 − (𝑏 / 2)) < ((∫1‘𝑓) / 2) ↔ (𝑏 / 2) <
((∫1‘𝑓) / 2))) |
475 | 474 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((𝑏 − (𝑏 / 2)) <
((∫1‘𝑓) / 2) ↔ (𝑏 / 2) < ((∫1‘𝑓) / 2))) |
476 | | rehalfcl 12199 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ∈ ℝ → (𝑏 / 2) ∈
ℝ) |
477 | 476 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ (𝑏 / 2) ∈
ℝ) |
478 | 8 | rehalfcld 12220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 ∈ dom ∫1
→ ((∫1‘𝑓) / 2) ∈ ℝ) |
479 | 478 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((∫1‘𝑓) / 2) ∈ ℝ) |
480 | 464, 477,
479 | ltsubaddd 11571 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((𝑏 − (𝑏 / 2)) <
((∫1‘𝑓) / 2) ↔ 𝑏 < (((∫1‘𝑓) / 2) + (𝑏 / 2)))) |
481 | 467, 475,
480 | 3bitr2d 307 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ (𝑏 <
(∫1‘𝑓)
↔ 𝑏 <
(((∫1‘𝑓) / 2) + (𝑏 / 2)))) |
482 | 481 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑏 <
(∫1‘𝑓)
↔ 𝑏 <
(((∫1‘𝑓) / 2) + (𝑏 / 2)))) |
483 | 482 | adantlrl 717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑏 <
(∫1‘𝑓)
↔ 𝑏 <
(((∫1‘𝑓) / 2) + (𝑏 / 2)))) |
484 | 463, 483 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 <
(((∫1‘𝑓) / 2) + (𝑏 / 2))) |
485 | 452, 264 | itg1mulc 24869 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘((ℝ × {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) =
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ·
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))))) |
486 | 448 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘((ℝ × {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) =
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) |
487 | 449 | itg11 24855 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((◡𝑓 “ (ran 𝑓 ∖ {0})) ∈ dom vol ∧
(vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ) →
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
488 | 247, 252,
487 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
489 | 488 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 ∈ dom ∫1
→ ((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ·
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) =
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
490 | 489 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ·
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) =
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
491 | 252 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑓 ∈ dom ∫1
→ (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℂ) |
492 | 491 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℂ) |
493 | 265, 492 | mulcomd 10996 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) = ((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
494 | 249 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
495 | 494 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
((∫1‘𝑓) − 𝑏)) = ((vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
((∫1‘𝑓) − 𝑏))) |
496 | 259, 382 | mulcomd 10996 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
((∫1‘𝑓) − 𝑏)) = (((∫1‘𝑓) − 𝑏) · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
497 | 495, 496 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
((∫1‘𝑓) − 𝑏)) = (((∫1‘𝑓) − 𝑏) · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
498 | 497 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
((∫1‘𝑓) − 𝑏)) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) =
((((∫1‘𝑓) − 𝑏) · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) / (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) |
499 | 492, 382,
384, 263 | divassd 11786 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
((∫1‘𝑓) − 𝑏)) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) = ((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
500 | 382, 257,
259, 261, 262 | divcan5rd 11778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) / (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) =
(((∫1‘𝑓) − 𝑏) / 2)) |
501 | 498, 499,
500 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) =
(((∫1‘𝑓) − 𝑏) / 2)) |
502 | 490, 493,
501 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ·
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) =
(((∫1‘𝑓) − 𝑏) / 2)) |
503 | 485, 486,
502 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) =
(((∫1‘𝑓) − 𝑏) / 2)) |
504 | 503 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((∫1‘𝑓) − (∫1‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) =
((∫1‘𝑓) − (((∫1‘𝑓) − 𝑏) / 2))) |
505 | | itg1sub 24874 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈ dom
∫1) → (∫1‘(𝑓 ∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) =
((∫1‘𝑓) − (∫1‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))))) |
506 | 233, 454,
505 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) =
((∫1‘𝑓) − (∫1‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))))) |
507 | 8 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘𝑓) ∈ ℂ) |
508 | 507 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘𝑓)
∈ ℂ) |
509 | 468 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 ∈
ℂ) |
510 | 508, 509,
257, 261 | divsubdird 11790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / 2) = (((∫1‘𝑓) / 2) − (𝑏 / 2))) |
511 | 510 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((∫1‘𝑓) − (((∫1‘𝑓) − 𝑏) / 2)) = ((∫1‘𝑓) −
(((∫1‘𝑓) / 2) − (𝑏 / 2)))) |
512 | 507 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ (∫1‘𝑓) ∈ ℂ) |
513 | 512 | halfcld 12218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((∫1‘𝑓) / 2) ∈ ℂ) |
514 | 471 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ (𝑏 / 2) ∈
ℂ) |
515 | 512, 513,
514 | subsubd 11360 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((∫1‘𝑓) − (((∫1‘𝑓) / 2) − (𝑏 / 2))) =
(((∫1‘𝑓) − ((∫1‘𝑓) / 2)) + (𝑏 / 2))) |
516 | 515 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((∫1‘𝑓) − (((∫1‘𝑓) / 2) − (𝑏 / 2))) =
(((∫1‘𝑓) − ((∫1‘𝑓) / 2)) + (𝑏 / 2))) |
517 | 507 | 2halvesd 12219 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑓 ∈ dom ∫1
→ (((∫1‘𝑓) / 2) + ((∫1‘𝑓) / 2)) =
(∫1‘𝑓)) |
518 | 517 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 ∈ dom ∫1
→ ((((∫1‘𝑓) / 2) + ((∫1‘𝑓) / 2)) −
((∫1‘𝑓) / 2)) = ((∫1‘𝑓) −
((∫1‘𝑓) / 2))) |
519 | 507 | halfcld 12218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑓 ∈ dom ∫1
→ ((∫1‘𝑓) / 2) ∈ ℂ) |
520 | 519, 519 | pncand 11333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 ∈ dom ∫1
→ ((((∫1‘𝑓) / 2) + ((∫1‘𝑓) / 2)) −
((∫1‘𝑓) / 2)) = ((∫1‘𝑓) / 2)) |
521 | 518, 520 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 ∈ dom ∫1
→ ((∫1‘𝑓) − ((∫1‘𝑓) / 2)) =
((∫1‘𝑓) / 2)) |
522 | 521 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓 ∈ dom ∫1
→ (((∫1‘𝑓) − ((∫1‘𝑓) / 2)) + (𝑏 / 2)) = (((∫1‘𝑓) / 2) + (𝑏 / 2))) |
523 | 522 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − ((∫1‘𝑓) / 2)) + (𝑏 / 2)) = (((∫1‘𝑓) / 2) + (𝑏 / 2))) |
524 | 511, 516,
523 | 3eqtrrd 2783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) / 2) + (𝑏 / 2)) = ((∫1‘𝑓) −
(((∫1‘𝑓) − 𝑏) / 2))) |
525 | 504, 506,
524 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) =
(((∫1‘𝑓) / 2) + (𝑏 / 2))) |
526 | 525 | adantlrl 717 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) =
(((∫1‘𝑓) / 2) + (𝑏 / 2))) |
527 | 484, 526 | breqtrrd 5102 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 <
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))))) |
528 | 456 | adantlrl 717 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1) |
529 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0)) |
530 | 529 | adantlrl 717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0)) |
531 | 233, 36 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℝ) |
532 | 264 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℝ) |
533 | 531, 532 | resubcld 11403 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∈
ℝ) |
534 | 533 | leidd 11541 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
535 | 534 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
536 | 285 | breq2d 5086 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) |
537 | 536 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) |
538 | 535, 537 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
539 | 533 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∈
ℝ) |
540 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → 0 ∈
ℝ) |
541 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → 0 ∈
ℝ) |
542 | 533, 541 | ltnled 11122 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) < 0 ↔ ¬ 0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) |
543 | 542 | biimpar 478 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) < 0) |
544 | 539, 540,
543 | ltled 11123 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ 0) |
545 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) |
546 | 545 | breq2d 5086 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ 0)) |
547 | 546 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ 0)) |
548 | 544, 547 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
549 | 538, 548 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
550 | 530, 549 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
551 | 550 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
552 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0) =
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) |
553 | 552 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) = ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
554 | | iba 528 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → (0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ↔ (0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
555 | 554 | bicomd 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → ((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) ↔ 0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) |
556 | 555 | ifbid 4482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
557 | 553, 556 | breq12d 5087 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → (((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
558 | 557 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → (((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
559 | 551, 558 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
560 | 35 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑓:ℝ⟶ℝ) |
561 | 170 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ 𝑧 ∈ ((◡𝑓 “ ran 𝑓) ∖ (◡𝑓 “ {0})))) |
562 | | eldif 3897 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑧 ∈ ((◡𝑓 “ ran 𝑓) ∖ (◡𝑓 “ {0})) ↔ (𝑧 ∈ (◡𝑓 “ ran 𝑓) ∧ ¬ 𝑧 ∈ (◡𝑓 “ {0}))) |
563 | 561, 562 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ (𝑧 ∈ (◡𝑓 “ ran 𝑓) ∧ ¬ 𝑧 ∈ (◡𝑓 “ {0})))) |
564 | 563 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑓:ℝ⟶ℝ →
(¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ ¬ (𝑧 ∈ (◡𝑓 “ ran 𝑓) ∧ ¬ 𝑧 ∈ (◡𝑓 “ {0})))) |
565 | 564 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
(¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ ¬ (𝑧 ∈ (◡𝑓 “ ran 𝑓) ∧ ¬ 𝑧 ∈ (◡𝑓 “ {0})))) |
566 | | pm4.53 983 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (¬
(𝑧 ∈ (◡𝑓 “ ran 𝑓) ∧ ¬ 𝑧 ∈ (◡𝑓 “ {0})) ↔ (¬ 𝑧 ∈ (◡𝑓 “ ran 𝑓) ∨ 𝑧 ∈ (◡𝑓 “ {0}))) |
567 | 207 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (◡𝑓 “ ran 𝑓) ↔ 𝑧 ∈ ℝ)) |
568 | 567 | biimpar 478 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
𝑧 ∈ (◡𝑓 “ ran 𝑓)) |
569 | 568 | pm2.24d 151 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
(¬ 𝑧 ∈ (◡𝑓 “ ran 𝑓) → (𝑓‘𝑧) = 0)) |
570 | 181 | simplbda 500 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑓 Fn ℝ ∧ 𝑧 ∈ (◡𝑓 “ {0})) → (𝑓‘𝑧) = 0) |
571 | 570 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑓 Fn ℝ → (𝑧 ∈ (◡𝑓 “ {0}) → (𝑓‘𝑧) = 0)) |
572 | 180, 571 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (◡𝑓 “ {0}) → (𝑓‘𝑧) = 0)) |
573 | 572 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
(𝑧 ∈ (◡𝑓 “ {0}) → (𝑓‘𝑧) = 0)) |
574 | 569, 573 | jaod 856 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
((¬ 𝑧 ∈ (◡𝑓 “ ran 𝑓) ∨ 𝑧 ∈ (◡𝑓 “ {0})) → (𝑓‘𝑧) = 0)) |
575 | 566, 574 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
(¬ (𝑧 ∈ (◡𝑓 “ ran 𝑓) ∧ ¬ 𝑧 ∈ (◡𝑓 “ {0})) → (𝑓‘𝑧) = 0)) |
576 | 565, 575 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
(¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → (𝑓‘𝑧) = 0)) |
577 | 576 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) ∧
¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → (𝑓‘𝑧) = 0) |
578 | 560, 577 | sylanl1 677 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → (𝑓‘𝑧) = 0) |
579 | 578 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑧) − 0) = (0 −
0)) |
580 | 579, 224 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑧) − 0) = 0) |
581 | 580, 30 | eqbrtrdi 5113 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑧) − 0) ≤ 0) |
582 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0) = 0) |
583 | 582 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) = ((𝑓‘𝑧) − 0)) |
584 | 289, 288 | sylbir 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∨ ¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) |
585 | 584 | olcs 873 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) |
586 | 583, 585 | breq12d 5087 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → (((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − 0) ≤ 0)) |
587 | 586 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → (((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − 0) ≤ 0)) |
588 | 581, 587 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
589 | 559, 588 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
590 | 589 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ∀𝑧 ∈ ℝ ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
591 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ℝ ∈
V) |
592 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈
V |
593 | 592 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈
V) |
594 | 422 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ∈
V) |
595 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓‘𝑧) ∈ V |
596 | 595 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ V) |
597 | 199, 105 | ifex 4509 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0) ∈
V |
598 | 597 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0) ∈
V) |
599 | 70 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑓 = (𝑧 ∈ ℝ ↦ (𝑓‘𝑧))) |
600 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) |
601 | 591, 596,
598, 599, 600 | offval2 7553 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) = (𝑧 ∈ ℝ ↦ ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) |
602 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
603 | 591, 593,
594, 601, 602 | ofrfval2 7554 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∘r
≤ (𝑧 ∈ ℝ
↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ↔ ∀𝑧 ∈ ℝ ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
604 | 590, 603 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∘r
≤ (𝑧 ∈ ℝ
↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
605 | | itg1le 24878 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1 ∧ (𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1 ∧ (𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∘r
≤ (𝑧 ∈ ℝ
↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) ≤
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))) |
606 | 528, 460,
604, 605 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) ≤
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))) |
607 | 436, 459,
462, 527, 606 | ltletrd 11135 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 <
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))) |
608 | 607 | adantllr 716 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 <
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))) |
609 | 608 | adantlll 715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 <
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))) |
610 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∫1‘(𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) ∈
V |
611 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 =
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) → (𝑎 =
(∫1‘𝑔)
↔ (∫1‘(𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔))) |
612 | 611 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 =
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) →
((∃𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)))) |
613 | 612 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 =
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) → (∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)))) |
614 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 =
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) → (𝑏 < 𝑎 ↔ 𝑏 < (∫1‘(𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))))) |
615 | 613, 614 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 =
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) →
((∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎) ↔ (∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)) ∧ 𝑏 < (∫1‘(𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))))) |
616 | 610, 615 | spcev 3545 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∃𝑔 ∈
dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)) ∧ 𝑏 < (∫1‘(𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
617 | 435, 609,
616 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
618 | 192, 617 | pm2.61dane 3032 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
619 | 618 | expr 457 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) → (𝑏 ∈ ℝ → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
620 | 619 | adantllr 716 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) → (𝑏 ∈ ℝ → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
621 | 620 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) → (𝑏 ∈ ℝ → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
622 | 157, 621 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
623 | 139, 622 | pm2.61dane 3032 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
624 | 623 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) → (𝑏 < (∫1‘𝑓) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
625 | 94, 624 | sylbid 239 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) → (𝑏 < 𝑠 → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
626 | 625 | imp 407 |
. . . . . . . . . . . 12
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) ∧ 𝑏 < 𝑠) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
627 | 626 | an32s 649 |
. . . . . . . . . . 11
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ 𝑏 < 𝑠) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
628 | 627 | rexlimdvaa 3214 |
. . . . . . . . . 10
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ 𝑏 < 𝑠) → (∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
629 | 628 | expimpd 454 |
. . . . . . . . 9
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → ((𝑏 < 𝑠 ∧ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓))) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
630 | 629 | ancomsd 466 |
. . . . . . . 8
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → ((∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)) ∧ 𝑏 < 𝑠) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
631 | 630 | exlimdv 1936 |
. . . . . . 7
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → (∃𝑠(∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)) ∧ 𝑏 < 𝑠) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
632 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → (𝑥 = (∫1‘𝑓) ↔ 𝑠 = (∫1‘𝑓))) |
633 | 632 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑥 = 𝑠 → ((𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) ↔ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) |
634 | 633 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑥 = 𝑠 → (∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) ↔ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) |
635 | 634 | rexab 3631 |
. . . . . . 7
⊢
(∃𝑠 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}𝑏 < 𝑠 ↔ ∃𝑠(∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)) ∧ 𝑏 < 𝑠)) |
636 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (𝑥 = (∫1‘𝑔) ↔ 𝑎 = (∫1‘𝑔))) |
637 | 636 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → ((∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)))) |
638 | 637 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)))) |
639 | 638 | rexab 3631 |
. . . . . . 7
⊢
(∃𝑎 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑏 < 𝑎 ↔ ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
640 | 631, 635,
639 | 3imtr4g 296 |
. . . . . 6
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → (∃𝑠 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 < 𝑠 → ∃𝑎 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑏 < 𝑎)) |
641 | 92, 640 | sylbid 239 |
. . . . 5
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → (𝑏 < sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
→ ∃𝑎 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑏 < 𝑎)) |
642 | 641 | impr 455 |
. . . 4
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑏 ∈
ℝ* ∧ 𝑏
< sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ))) →
∃𝑎 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑏 < 𝑎) |
643 | 6, 15, 89, 642 | eqsupd 9216 |
. . 3
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
= sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, <
)) |
644 | 4, 643 | eqtrid 2790 |
. 2
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ sup(𝐿,
ℝ*, < ) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
645 | 2, 644 | eqtr4d 2781 |
1
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∫2‘𝐹) = sup(𝐿, ℝ*, <
)) |