Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
β’ {π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))} = {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))} |
2 | 1 | itg2val 25237 |
. 2
β’ (πΉ:ββΆ(0[,]+β)
β (β«2βπΉ) = sup({π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))}, β*, <
)) |
3 | | itg2addnclem.1 |
. . . 4
β’ πΏ = {π₯ β£ βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ))} |
4 | 3 | supeq1i 9438 |
. . 3
β’ sup(πΏ, β*, < ) =
sup({π₯ β£ βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ))}, β*, <
) |
5 | | xrltso 13116 |
. . . . 5
β’ < Or
β* |
6 | 5 | a1i 11 |
. . . 4
β’ (πΉ:ββΆ(0[,]+β)
β < Or β*) |
7 | | simprr 771 |
. . . . . . . 8
β’ ((π β dom β«1
β§ (π
βr β€ πΉ
β§ π₯ =
(β«1βπ))) β π₯ = (β«1βπ)) |
8 | | itg1cl 25193 |
. . . . . . . . . 10
β’ (π β dom β«1
β (β«1βπ) β β) |
9 | 8 | rexrd 11260 |
. . . . . . . . 9
β’ (π β dom β«1
β (β«1βπ) β
β*) |
10 | 9 | adantr 481 |
. . . . . . . 8
β’ ((π β dom β«1
β§ (π
βr β€ πΉ
β§ π₯ =
(β«1βπ))) β (β«1βπ) β
β*) |
11 | 7, 10 | eqeltrd 2833 |
. . . . . . 7
β’ ((π β dom β«1
β§ (π
βr β€ πΉ
β§ π₯ =
(β«1βπ))) β π₯ β β*) |
12 | 11 | rexlimiva 3147 |
. . . . . 6
β’
(βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ)) β π₯ β β*) |
13 | 12 | abssi 4066 |
. . . . 5
β’ {π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))} β
β* |
14 | | supxrcl 13290 |
. . . . 5
β’ ({π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))} β β* β
sup({π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))}, β*, < ) β
β*) |
15 | 13, 14 | mp1i 13 |
. . . 4
β’ (πΉ:ββΆ(0[,]+β)
β sup({π₯ β£
βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))}, β*, < ) β
β*) |
16 | | fveq1 6887 |
. . . . . . . . . . . . . . . 16
β’ (π = π β (πβπ§) = (πβπ§)) |
17 | 16 | eqeq1d 2734 |
. . . . . . . . . . . . . . 15
β’ (π = π β ((πβπ§) = 0 β (πβπ§) = 0)) |
18 | 16 | oveq1d 7420 |
. . . . . . . . . . . . . . 15
β’ (π = π β ((πβπ§) + π¦) = ((πβπ§) + π¦)) |
19 | 17, 18 | ifbieq2d 4553 |
. . . . . . . . . . . . . 14
β’ (π = π β if((πβπ§) = 0, 0, ((πβπ§) + π¦)) = if((πβπ§) = 0, 0, ((πβπ§) + π¦))) |
20 | 19 | mpteq2dv 5249 |
. . . . . . . . . . . . 13
β’ (π = π β (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) = (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦)))) |
21 | 20 | breq1d 5157 |
. . . . . . . . . . . 12
β’ (π = π β ((π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ)) |
22 | 21 | rexbidv 3178 |
. . . . . . . . . . 11
β’ (π = π β (βπ¦ β β+ (π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ)) |
23 | | fveq2 6888 |
. . . . . . . . . . . 12
β’ (π = π β (β«1βπ) =
(β«1βπ)) |
24 | 23 | eqeq2d 2743 |
. . . . . . . . . . 11
β’ (π = π β (π₯ = (β«1βπ) β π₯ = (β«1βπ))) |
25 | 22, 24 | anbi12d 631 |
. . . . . . . . . 10
β’ (π = π β ((βπ¦ β β+ (π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ)) β (βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ)))) |
26 | 25 | cbvrexvw 3235 |
. . . . . . . . 9
β’
(βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ)) β βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ))) |
27 | | breq2 5151 |
. . . . . . . . . . . . . . . . 17
β’ (0 =
if((πβπ§) = 0, 0, ((πβπ§) + π¦)) β ((πβπ§) β€ 0 β (πβπ§) β€ if((πβπ§) = 0, 0, ((πβπ§) + π¦)))) |
28 | | breq2 5151 |
. . . . . . . . . . . . . . . . 17
β’ (((πβπ§) + π¦) = if((πβπ§) = 0, 0, ((πβπ§) + π¦)) β ((πβπ§) β€ ((πβπ§) + π¦) β (πβπ§) β€ if((πβπ§) = 0, 0, ((πβπ§) + π¦)))) |
29 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πβπ§) = 0 β (πβπ§) = 0) |
30 | | 0le0 12309 |
. . . . . . . . . . . . . . . . . . 19
β’ 0 β€
0 |
31 | 29, 30 | eqbrtrdi 5186 |
. . . . . . . . . . . . . . . . . 18
β’ ((πβπ§) = 0 β (πβπ§) β€ 0) |
32 | 31 | adantl 482 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β dom β«1
β§ π¦ β
β+) β§ π§ β β) β§ (πβπ§) = 0) β (πβπ§) β€ 0) |
33 | | rpge0 12983 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π¦ β β+
β 0 β€ π¦) |
34 | 33 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β dom β«1
β§ π¦ β
β+) β§ π§ β β) β 0 β€ π¦) |
35 | | i1ff 25184 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β dom β«1
β π:ββΆβ) |
36 | 35 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β dom β«1
β§ π§ β β)
β (πβπ§) β
β) |
37 | 36 | adantlr 713 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β dom β«1
β§ π¦ β
β+) β§ π§ β β) β (πβπ§) β β) |
38 | | rpre 12978 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π¦ β β+
β π¦ β
β) |
39 | 38 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β dom β«1
β§ π¦ β
β+) β§ π§ β β) β π¦ β β) |
40 | 37, 39 | addge01d 11798 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β dom β«1
β§ π¦ β
β+) β§ π§ β β) β (0 β€ π¦ β (πβπ§) β€ ((πβπ§) + π¦))) |
41 | 34, 40 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β dom β«1
β§ π¦ β
β+) β§ π§ β β) β (πβπ§) β€ ((πβπ§) + π¦)) |
42 | 41 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β dom β«1
β§ π¦ β
β+) β§ π§ β β) β§ Β¬ (πβπ§) = 0) β (πβπ§) β€ ((πβπ§) + π¦)) |
43 | 27, 28, 32, 42 | ifbothda 4565 |
. . . . . . . . . . . . . . . 16
β’ (((π β dom β«1
β§ π¦ β
β+) β§ π§ β β) β (πβπ§) β€ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) |
44 | 43 | adantlll 716 |
. . . . . . . . . . . . . . 15
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β§ π§ β β) β (πβπ§) β€ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) |
45 | 35 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . 18
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β π:ββΆβ) |
46 | 45 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . . . 17
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β§ π§ β β) β (πβπ§) β β) |
47 | 46 | rexrd 11260 |
. . . . . . . . . . . . . . . 16
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β§ π§ β β) β (πβπ§) β
β*) |
48 | | 0re 11212 |
. . . . . . . . . . . . . . . . . 18
β’ 0 β
β |
49 | 38 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β§ π§ β β) β π¦ β β) |
50 | 46, 49 | readdcld 11239 |
. . . . . . . . . . . . . . . . . 18
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β§ π§ β β) β ((πβπ§) + π¦) β β) |
51 | | ifcl 4572 |
. . . . . . . . . . . . . . . . . 18
β’ ((0
β β β§ ((πβπ§) + π¦) β β) β if((πβπ§) = 0, 0, ((πβπ§) + π¦)) β β) |
52 | 48, 50, 51 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β§ π§ β β) β if((πβπ§) = 0, 0, ((πβπ§) + π¦)) β β) |
53 | 52 | rexrd 11260 |
. . . . . . . . . . . . . . . 16
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β§ π§ β β) β if((πβπ§) = 0, 0, ((πβπ§) + π¦)) β
β*) |
54 | | iccssxr 13403 |
. . . . . . . . . . . . . . . . . . 19
β’
(0[,]+β) β β* |
55 | | fss 6731 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΉ:ββΆ(0[,]+β)
β§ (0[,]+β) β β*) β πΉ:ββΆβ*) |
56 | 54, 55 | mpan2 689 |
. . . . . . . . . . . . . . . . . 18
β’ (πΉ:ββΆ(0[,]+β)
β πΉ:ββΆβ*) |
57 | 56 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β πΉ:ββΆβ*) |
58 | 57 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . . 16
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β§ π§ β β) β (πΉβπ§) β
β*) |
59 | | xrletr 13133 |
. . . . . . . . . . . . . . . 16
β’ (((πβπ§) β β* β§ if((πβπ§) = 0, 0, ((πβπ§) + π¦)) β β* β§ (πΉβπ§) β β*) β (((πβπ§) β€ if((πβπ§) = 0, 0, ((πβπ§) + π¦)) β§ if((πβπ§) = 0, 0, ((πβπ§) + π¦)) β€ (πΉβπ§)) β (πβπ§) β€ (πΉβπ§))) |
60 | 47, 53, 58, 59 | syl3anc 1371 |
. . . . . . . . . . . . . . 15
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β§ π§ β β) β (((πβπ§) β€ if((πβπ§) = 0, 0, ((πβπ§) + π¦)) β§ if((πβπ§) = 0, 0, ((πβπ§) + π¦)) β€ (πΉβπ§)) β (πβπ§) β€ (πΉβπ§))) |
61 | 44, 60 | mpand 693 |
. . . . . . . . . . . . . 14
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β§ π§ β β) β (if((πβπ§) = 0, 0, ((πβπ§) + π¦)) β€ (πΉβπ§) β (πβπ§) β€ (πΉβπ§))) |
62 | 61 | ralimdva 3167 |
. . . . . . . . . . . . 13
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β (βπ§ β β if((πβπ§) = 0, 0, ((πβπ§) + π¦)) β€ (πΉβπ§) β βπ§ β β (πβπ§) β€ (πΉβπ§))) |
63 | | reex 11197 |
. . . . . . . . . . . . . . 15
β’ β
β V |
64 | 63 | a1i 11 |
. . . . . . . . . . . . . 14
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β β β V) |
65 | | eqidd 2733 |
. . . . . . . . . . . . . 14
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) = (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦)))) |
66 | | id 22 |
. . . . . . . . . . . . . . . 16
β’ (πΉ:ββΆ(0[,]+β)
β πΉ:ββΆ(0[,]+β)) |
67 | 66 | feqmptd 6957 |
. . . . . . . . . . . . . . 15
β’ (πΉ:ββΆ(0[,]+β)
β πΉ = (π§ β β β¦ (πΉβπ§))) |
68 | 67 | ad2antrr 724 |
. . . . . . . . . . . . . 14
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β πΉ = (π§ β β β¦ (πΉβπ§))) |
69 | 64, 52, 58, 65, 68 | ofrfval2 7687 |
. . . . . . . . . . . . 13
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β ((π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β βπ§ β β if((πβπ§) = 0, 0, ((πβπ§) + π¦)) β€ (πΉβπ§))) |
70 | 35 | feqmptd 6957 |
. . . . . . . . . . . . . . 15
β’ (π β dom β«1
β π = (π§ β β β¦ (πβπ§))) |
71 | 70 | ad2antlr 725 |
. . . . . . . . . . . . . 14
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β π = (π§ β β β¦ (πβπ§))) |
72 | 64, 46, 58, 71, 68 | ofrfval2 7687 |
. . . . . . . . . . . . 13
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β (π βr β€ πΉ β βπ§ β β (πβπ§) β€ (πΉβπ§))) |
73 | 62, 69, 72 | 3imtr4d 293 |
. . . . . . . . . . . 12
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π¦
β β+) β ((π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β π βr β€ πΉ)) |
74 | 73 | rexlimdva 3155 |
. . . . . . . . . . 11
β’ ((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β (βπ¦ β β+ (π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β π βr β€ πΉ)) |
75 | 74 | anim1d 611 |
. . . . . . . . . 10
β’ ((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β ((βπ¦ β β+ (π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ)) β (π βr β€ πΉ β§ π₯ = (β«1βπ)))) |
76 | 75 | reximdva 3168 |
. . . . . . . . 9
β’ (πΉ:ββΆ(0[,]+β)
β (βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ)) β βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ)))) |
77 | 26, 76 | biimtrid 241 |
. . . . . . . 8
β’ (πΉ:ββΆ(0[,]+β)
β (βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ)) β βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ)))) |
78 | 77 | ss2abdv 4059 |
. . . . . . 7
β’ (πΉ:ββΆ(0[,]+β)
β {π₯ β£
βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ))} β {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))}) |
79 | 78 | sseld 3980 |
. . . . . 6
β’ (πΉ:ββΆ(0[,]+β)
β (π β {π₯ β£ βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ))} β π β {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))})) |
80 | | simp3r 1202 |
. . . . . . . . . . 11
β’ ((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1 β§ (π
βr β€ πΉ
β§ π₯ =
(β«1βπ))) β π₯ = (β«1βπ)) |
81 | 9 | 3ad2ant2 1134 |
. . . . . . . . . . 11
β’ ((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1 β§ (π
βr β€ πΉ
β§ π₯ =
(β«1βπ))) β (β«1βπ) β
β*) |
82 | 80, 81 | eqeltrd 2833 |
. . . . . . . . . 10
β’ ((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1 β§ (π
βr β€ πΉ
β§ π₯ =
(β«1βπ))) β π₯ β β*) |
83 | 82 | rexlimdv3a 3159 |
. . . . . . . . 9
β’ (πΉ:ββΆ(0[,]+β)
β (βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ)) β π₯ β
β*)) |
84 | 83 | abssdv 4064 |
. . . . . . . 8
β’ (πΉ:ββΆ(0[,]+β)
β {π₯ β£
βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))} β
β*) |
85 | | xrsupss 13284 |
. . . . . . . 8
β’ ({π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))} β β* β
βπ β
β* (βπ β {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))} Β¬ π < π β§ βπ β β* (π < π β βπ β {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))}π < π ))) |
86 | 84, 85 | syl 17 |
. . . . . . 7
β’ (πΉ:ββΆ(0[,]+β)
β βπ β
β* (βπ β {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))} Β¬ π < π β§ βπ β β* (π < π β βπ β {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))}π < π ))) |
87 | 6, 86 | supub 9450 |
. . . . . 6
β’ (πΉ:ββΆ(0[,]+β)
β (π β {π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))} β Β¬ sup({π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))}, β*, < )
< π)) |
88 | 79, 87 | syld 47 |
. . . . 5
β’ (πΉ:ββΆ(0[,]+β)
β (π β {π₯ β£ βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ))} β Β¬ sup({π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))}, β*, < ) < π)) |
89 | 88 | imp 407 |
. . . 4
β’ ((πΉ:ββΆ(0[,]+β)
β§ π β {π₯ β£ βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ))}) β Β¬ sup({π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))}, β*, < ) < π) |
90 | | supxrlub 13300 |
. . . . . . . 8
β’ (({π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))} β β* β§ π β β*)
β (π < sup({π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))}, β*, < ) β
βπ β {π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))}π < π )) |
91 | 13, 90 | mpan 688 |
. . . . . . 7
β’ (π β β*
β (π < sup({π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))}, β*, < ) β
βπ β {π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))}π < π )) |
92 | 91 | adantl 482 |
. . . . . 6
β’ ((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β (π < sup({π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))}, β*, < )
β βπ β
{π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))}π < π )) |
93 | | simprrr 780 |
. . . . . . . . . . . . . . 15
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β§ (π β dom β«1 β§ (π βr β€ πΉ β§ π = (β«1βπ)))) β π = (β«1βπ)) |
94 | 93 | breq2d 5159 |
. . . . . . . . . . . . . 14
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β§ (π β dom β«1 β§ (π βr β€ πΉ β§ π = (β«1βπ)))) β (π < π β π < (β«1βπ))) |
95 | | simplll 773 |
. . . . . . . . . . . . . . . . 17
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β§ (π β dom β«1 β§ (π βr β€ πΉ β§ π = (β«1βπ)))) β§ π < (β«1βπ)) β πΉ:ββΆ(0[,]+β)) |
96 | | i1f0 25195 |
. . . . . . . . . . . . . . . . . . 19
β’ (β
Γ {0}) β dom β«1 |
97 | | 2rp 12975 |
. . . . . . . . . . . . . . . . . . . . 21
β’ 2 β
β+ |
98 | 97 | ne0ii 4336 |
. . . . . . . . . . . . . . . . . . . 20
β’
β+ β β
|
99 | | ffvelcdm 7080 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((πΉ:ββΆ(0[,]+β)
β§ π§ β β)
β (πΉβπ§) β
(0[,]+β)) |
100 | | elxrge0 13430 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((πΉβπ§) β (0[,]+β) β ((πΉβπ§) β β* β§ 0 β€
(πΉβπ§))) |
101 | 99, 100 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((πΉ:ββΆ(0[,]+β)
β§ π§ β β)
β ((πΉβπ§) β β*
β§ 0 β€ (πΉβπ§))) |
102 | 101 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((πΉ:ββΆ(0[,]+β)
β§ π§ β β)
β 0 β€ (πΉβπ§)) |
103 | 102 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (πΉ:ββΆ(0[,]+β)
β βπ§ β
β 0 β€ (πΉβπ§)) |
104 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (πΉ:ββΆ(0[,]+β)
β β β V) |
105 | | c0ex 11204 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ 0 β
V |
106 | 105 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((πΉ:ββΆ(0[,]+β)
β§ π§ β β)
β 0 β V) |
107 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (πΉ:ββΆ(0[,]+β)
β (π§ β β
β¦ 0) = (π§ β
β β¦ 0)) |
108 | 104, 106,
99, 107, 67 | ofrfval2 7687 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (πΉ:ββΆ(0[,]+β)
β ((π§ β β
β¦ 0) βr β€ πΉ β βπ§ β β 0 β€ (πΉβπ§))) |
109 | 103, 108 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (πΉ:ββΆ(0[,]+β)
β (π§ β β
β¦ 0) βr β€ πΉ) |
110 | 109 | ralrimivw 3150 |
. . . . . . . . . . . . . . . . . . . 20
β’ (πΉ:ββΆ(0[,]+β)
β βπ¦ β
β+ (π§
β β β¦ 0) βr β€ πΉ) |
111 | | r19.2z 4493 |
. . . . . . . . . . . . . . . . . . . 20
β’
((β+ β β
β§ βπ¦ β β+ (π§ β β β¦ 0)
βr β€ πΉ)
β βπ¦ β
β+ (π§
β β β¦ 0) βr β€ πΉ) |
112 | 98, 110, 111 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
β’ (πΉ:ββΆ(0[,]+β)
β βπ¦ β
β+ (π§
β β β¦ 0) βr β€ πΉ) |
113 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π = (β Γ {0}) β
(β«1βπ)
= (β«1β(β Γ {0}))) |
114 | | itg10 25196 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(β«1β(β Γ {0})) = 0 |
115 | 113, 114 | eqtr2di 2789 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π = (β Γ {0}) β
0 = (β«1βπ)) |
116 | 115 | biantrud 532 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π = (β Γ {0}) β
(βπ¦ β
β+ (π§
β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β (βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ 0 =
(β«1βπ)))) |
117 | | fveq1 6887 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π = (β Γ {0}) β
(πβπ§) = ((β Γ {0})βπ§)) |
118 | 105 | fvconst2 7201 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π§ β β β ((β
Γ {0})βπ§) =
0) |
119 | 117, 118 | sylan9eq 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π = (β Γ {0}) β§
π§ β β) β
(πβπ§) = 0) |
120 | | iftrue 4533 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((πβπ§) = 0 β if((πβπ§) = 0, 0, ((πβπ§) + π¦)) = 0) |
121 | 119, 120 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π = (β Γ {0}) β§
π§ β β) β
if((πβπ§) = 0, 0, ((πβπ§) + π¦)) = 0) |
122 | 121 | mpteq2dva 5247 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π = (β Γ {0}) β
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) = (π§ β β β¦ 0)) |
123 | 122 | breq1d 5157 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π = (β Γ {0}) β
((π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β (π§ β β β¦ 0)
βr β€ πΉ)) |
124 | 123 | rexbidv 3178 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π = (β Γ {0}) β
(βπ¦ β
β+ (π§
β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β βπ¦ β β+
(π§ β β β¦
0) βr β€ πΉ)) |
125 | 116, 124 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π = (β Γ {0}) β
((βπ¦ β
β+ (π§
β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ 0 =
(β«1βπ)) β βπ¦ β β+ (π§ β β β¦ 0)
βr β€ πΉ)) |
126 | 125 | rspcev 3612 |
. . . . . . . . . . . . . . . . . . 19
β’
(((β Γ {0}) β dom β«1 β§ βπ¦ β β+
(π§ β β β¦
0) βr β€ πΉ) β βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ 0 =
(β«1βπ))) |
127 | 96, 112, 126 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
β’ (πΉ:ββΆ(0[,]+β)
β βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ 0 =
(β«1βπ))) |
128 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = -β β π = -β) |
129 | | mnflt 13099 |
. . . . . . . . . . . . . . . . . . . 20
β’ (0 β
β β -β < 0) |
130 | 48, 129 | mp1i 13 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = -β β -β <
0) |
131 | 128, 130 | eqbrtrd 5169 |
. . . . . . . . . . . . . . . . . 18
β’ (π = -β β π < 0) |
132 | | eqeq1 2736 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π = 0 β (π = (β«1βπ) β 0 =
(β«1βπ))) |
133 | 132 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π = 0 β ((βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β (βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ 0 =
(β«1βπ)))) |
134 | 133 | rexbidv 3178 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π = 0 β (βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ 0 =
(β«1βπ)))) |
135 | | breq2 5151 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π = 0 β (π < π β π < 0)) |
136 | 134, 135 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = 0 β ((βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π) β (βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ 0 =
(β«1βπ)) β§ π < 0))) |
137 | 105, 136 | spcev 3596 |
. . . . . . . . . . . . . . . . . 18
β’
((βπ β
dom β«1(βπ¦ β β+ (π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ 0 =
(β«1βπ)) β§ π < 0) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π)) |
138 | 127, 131,
137 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
β’ ((πΉ:ββΆ(0[,]+β)
β§ π = -β) β
βπ(βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π)) |
139 | 95, 138 | sylan 580 |
. . . . . . . . . . . . . . . 16
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β β*)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ π < (β«1βπ)) β§ π = -β) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π)) |
140 | | simp-4r 782 |
. . . . . . . . . . . . . . . . . 18
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β β*)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ π < (β«1βπ)) β§ π β -β) β π β β*) |
141 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β dom β«1
β§ (π
βr β€ πΉ
β§ π =
(β«1βπ))) β (β«1βπ) β
β) |
142 | 141 | ad3antlr 729 |
. . . . . . . . . . . . . . . . . 18
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β β*)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ π < (β«1βπ)) β§ π β -β) β
(β«1βπ)
β β) |
143 | | simpllr 774 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β§ (π β dom β«1 β§ (π βr β€ πΉ β§ π = (β«1βπ)))) β§ π < (β«1βπ)) β π β β*) |
144 | | ngtmnft 13141 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β β*
β (π = -β β
Β¬ -β < π)) |
145 | 144 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β β*
β (Β¬ -β < π β π = -β)) |
146 | 145 | necon1ad 2957 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β β*
β (π β -β
β -β < π)) |
147 | 146 | imp 407 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β β*
β§ π β -β)
β -β < π) |
148 | 143, 147 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β β*)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ π < (β«1βπ)) β§ π β -β) β -β < π) |
149 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β π β β*) |
150 | 9 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β dom β«1
β§ (π
βr β€ πΉ
β§ π =
(β«1βπ))) β (β«1βπ) β
β*) |
151 | 149, 150 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β§ (π β dom β«1 β§ (π βr β€ πΉ β§ π = (β«1βπ)))) β (π β β* β§
(β«1βπ)
β β*)) |
152 | | xrltle 13124 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β β*
β§ (β«1βπ) β β*) β (π <
(β«1βπ)
β π β€
(β«1βπ))) |
153 | 152 | imp 407 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β β*
β§ (β«1βπ) β β*) β§ π <
(β«1βπ)) β π β€ (β«1βπ)) |
154 | 151, 153 | sylan 580 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β§ (π β dom β«1 β§ (π βr β€ πΉ β§ π = (β«1βπ)))) β§ π < (β«1βπ)) β π β€ (β«1βπ)) |
155 | 154 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β β*)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ π < (β«1βπ)) β§ π β -β) β π β€ (β«1βπ)) |
156 | | xrre 13144 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β β*
β§ (β«1βπ) β β) β§ (-β < π β§ π β€ (β«1βπ))) β π β β) |
157 | 140, 142,
148, 155, 156 | syl22anc 837 |
. . . . . . . . . . . . . . . . 17
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β β*)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ π < (β«1βπ)) β§ π β -β) β π β β) |
158 | 127 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) = 0) β βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ 0 =
(β«1βπ))) |
159 | | simplrl 775 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) = 0) β π <
(β«1βπ)) |
160 | | simplrl 775 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β π β dom
β«1) |
161 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π β dom β«1
β§ (vol*β(β‘π β (ran π β {0}))) = 0) β π β dom
β«1) |
162 | | cnvimass 6077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (β‘π β (ran π β {0})) β dom π |
163 | 162, 35 | fssdm 6734 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π β dom β«1
β (β‘π β (ran π β {0})) β
β) |
164 | 163 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π β dom β«1
β§ (vol*β(β‘π β (ran π β {0}))) = 0) β (β‘π β (ran π β {0})) β
β) |
165 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π β dom β«1
β§ (vol*β(β‘π β (ran π β {0}))) = 0) β
(vol*β(β‘π β (ran π β {0}))) = 0) |
166 | | fdm 6723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π:ββΆβ β
dom π =
β) |
167 | 166 | eqcomd 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π:ββΆβ β
β = dom π) |
168 | | ffun 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (π:ββΆβ β
Fun π) |
169 | | difpreima 7063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (Fun
π β (β‘π β (ran π β {0})) = ((β‘π β ran π) β (β‘π β {0}))) |
170 | 168, 169 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π:ββΆβ β
(β‘π β (ran π β {0})) = ((β‘π β ran π) β (β‘π β {0}))) |
171 | | cnvimarndm 6078 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (β‘π β ran π) = dom π |
172 | 171 | difeq1i 4117 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ ((β‘π β ran π) β (β‘π β {0})) = (dom π β (β‘π β {0})) |
173 | 170, 172 | eqtrdi 2788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π:ββΆβ β
(β‘π β (ran π β {0})) = (dom π β (β‘π β {0}))) |
174 | 167, 173 | difeq12d 4122 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π:ββΆβ β
(β β (β‘π β (ran π β {0}))) = (dom π β (dom π β (β‘π β {0})))) |
175 | | cnvimass 6077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (β‘π β {0}) β dom π |
176 | | dfss4 4257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((β‘π β {0}) β dom π β (dom π β (dom π β (β‘π β {0}))) = (β‘π β {0})) |
177 | 175, 176 | mpbi 229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (dom
π β (dom π β (β‘π β {0}))) = (β‘π β {0}) |
178 | 174, 177 | eqtrdi 2788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (π:ββΆβ β
(β β (β‘π β (ran π β {0}))) = (β‘π β {0})) |
179 | 178 | eleq2d 2819 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (π:ββΆβ β
(π§ β (β β
(β‘π β (ran π β {0}))) β π§ β (β‘π β {0}))) |
180 | | ffn 6714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (π:ββΆβ β
π Fn
β) |
181 | | fniniseg 7058 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π Fn β β (π§ β (β‘π β {0}) β (π§ β β β§ (πβπ§) = 0))) |
182 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π§ β β β§ (πβπ§) = 0) β (πβπ§) = 0) |
183 | 181, 182 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (π Fn β β (π§ β (β‘π β {0}) β (πβπ§) = 0)) |
184 | 180, 183 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (π:ββΆβ β
(π§ β (β‘π β {0}) β (πβπ§) = 0)) |
185 | 179, 184 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (π:ββΆβ β
(π§ β (β β
(β‘π β (ran π β {0}))) β (πβπ§) = 0)) |
186 | 35, 185 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π β dom β«1
β (π§ β (β
β (β‘π β (ran π β {0}))) β (πβπ§) = 0)) |
187 | 186 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π β dom β«1
β§ π§ β (β
β (β‘π β (ran π β {0})))) β (πβπ§) = 0) |
188 | 187 | adantlr 713 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β dom β«1
β§ (vol*β(β‘π β (ran π β {0}))) = 0) β§ π§ β (β β (β‘π β (ran π β {0})))) β (πβπ§) = 0) |
189 | 161, 164,
165, 188 | itg10a 25219 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π β dom β«1
β§ (vol*β(β‘π β (ran π β {0}))) = 0) β
(β«1βπ)
= 0) |
190 | 160, 189 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) = 0) β
(β«1βπ)
= 0) |
191 | 159, 190 | breqtrd 5173 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) = 0) β π < 0) |
192 | 158, 191,
137 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) = 0) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π)) |
193 | | simprl 769 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β π β dom
β«1) |
194 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π <
(β«1βπ)
β§ π β β)
β π β
β) |
195 | 193, 194 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β (π β dom β«1 β§ π β
β)) |
196 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β β β
V) |
197 | | fvex 6901 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (πβπ’) β V |
198 | 197 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β (πβπ’) β V) |
199 | | ovex 7438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β V |
200 | 199, 105 | ifex 4577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0) β
V |
201 | 200 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0) β
V) |
202 | 35 | feqmptd 6957 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (π β dom β«1
β π = (π’ β β β¦ (πβπ’))) |
203 | 202 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π = (π’ β β β¦ (πβπ’))) |
204 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) = (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) |
205 | 196, 198,
201, 203, 204 | offval2 7686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π βf β
(π’ β β β¦
if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) = (π’ β β β¦ ((πβπ’) β if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)))) |
206 | | ovif2 7503 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((πβπ’) β if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) = if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ’) β 0)) |
207 | 171, 166 | eqtrid 2784 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
β’ (π:ββΆβ β
(β‘π β ran π) = β) |
208 | 207 | difeq1d 4120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
β’ (π:ββΆβ β
((β‘π β ran π) β (β‘π β {0})) = (β β (β‘π β {0}))) |
209 | 170, 208 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
β’ (π:ββΆβ β
(β‘π β (ran π β {0})) = (β β (β‘π β {0}))) |
210 | 209 | eleq2d 2819 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ (π:ββΆβ β
(π’ β (β‘π β (ran π β {0})) β π’ β (β β (β‘π β {0})))) |
211 | 35, 210 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ (π β dom β«1
β (π’ β (β‘π β (ran π β {0})) β π’ β (β β (β‘π β {0})))) |
212 | 211 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β (π’ β (β‘π β (ran π β {0})) β π’ β (β β (β‘π β {0})))) |
213 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β π’ β
β) |
214 | 213 | biantrurd 533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β (Β¬
π’ β (β‘π β {0}) β (π’ β β β§ Β¬ π’ β (β‘π β {0})))) |
215 | | eldif 3957 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ (π’ β (β β (β‘π β {0})) β (π’ β β β§ Β¬ π’ β (β‘π β {0}))) |
216 | 214, 215 | bitr4di 288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β (Β¬
π’ β (β‘π β {0}) β π’ β (β β (β‘π β {0})))) |
217 | 212, 216 | bitr4d 281 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β (π’ β (β‘π β (ran π β {0})) β Β¬ π’ β (β‘π β {0}))) |
218 | 217 | con2bid 354 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β (π’ β (β‘π β {0}) β Β¬ π’ β (β‘π β (ran π β {0})))) |
219 | | fniniseg 7058 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (π Fn β β (π’ β (β‘π β {0}) β (π’ β β β§ (πβπ’) = 0))) |
220 | 35, 180, 219 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (π β dom β«1
β (π’ β (β‘π β {0}) β (π’ β β β§ (πβπ’) = 0))) |
221 | 220 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β (π’ β (β‘π β {0}) β (π’ β β β§ (πβπ’) = 0))) |
222 | 218, 221 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β (Β¬
π’ β (β‘π β (ran π β {0})) β (π’ β β β§ (πβπ’) = 0))) |
223 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ ((πβπ’) = 0 β ((πβπ’) β 0) = (0 β
0)) |
224 | | 0m0e0 12328 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (0
β 0) = 0 |
225 | 223, 224 | eqtrdi 2788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ ((πβπ’) = 0 β ((πβπ’) β 0) = 0) |
226 | 225 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((π’ β β β§ (πβπ’) = 0) β ((πβπ’) β 0) = 0) |
227 | 222, 226 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β (Β¬
π’ β (β‘π β (ran π β {0})) β ((πβπ’) β 0) = 0)) |
228 | 227 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’
(((((π β dom
β«1 β§ π
β β) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β§ Β¬
π’ β (β‘π β (ran π β {0}))) β ((πβπ’) β 0) = 0) |
229 | 228 | ifeq2da 4559 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ’) β 0)) = if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
230 | 206, 229 | eqtrid 2784 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β ((πβπ’) β if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) = if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
231 | 230 | mpteq2dva 5247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π’ β β β¦ ((πβπ’) β if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) = (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) |
232 | 205, 231 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π βf β
(π’ β β β¦
if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) = (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) |
233 | | simpll 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π β dom
β«1) |
234 | 199 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β V) |
235 | | 1ex 11206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ 1 β
V |
236 | 235, 105 | ifex 4577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ if(π’ β (β‘π β (ran π β {0})), 1, 0) β
V |
237 | 236 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π’ β β) β if(π’ β (β‘π β (ran π β {0})), 1, 0) β
V) |
238 | | fconstmpt 5736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (β
Γ {(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))}) = (π’ β β β¦
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) |
239 | 238 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (β
Γ {(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))}) = (π’ β β β¦
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
240 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), 1, 0)) = (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), 1, 0))) |
241 | 196, 234,
237, 239, 240 | offval2 7686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β ((β
Γ {(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))}) βf
Β· (π’ β β
β¦ if(π’ β (β‘π β (ran π β {0})), 1, 0))) = (π’ β β β¦
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· if(π’ β (β‘π β (ran π β {0})), 1, 0)))) |
242 | | ovif2 7503 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· if(π’ β (β‘π β (ran π β {0})), 1, 0)) = if(π’ β (β‘π β (ran π β {0})),
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· 1),
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β·
0)) |
243 | | resubcl 11520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’
(((β«1βπ) β β β§ π β β) β
((β«1βπ) β π) β β) |
244 | 8, 243 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ ((π β dom β«1
β§ π β β)
β ((β«1βπ) β π) β β) |
245 | 244 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((β«1βπ) β π) β β) |
246 | | 2re 12282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ 2 β
β |
247 | | i1fima 25186 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
β’ (π β dom β«1
β (β‘π β (ran π β {0})) β dom
vol) |
248 | | mblvol 25038 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
β’ ((β‘π β (ran π β {0})) β dom vol β
(volβ(β‘π β (ran π β {0}))) = (vol*β(β‘π β (ran π β {0})))) |
249 | 247, 248 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
β’ (π β dom β«1
β (volβ(β‘π β (ran π β {0}))) = (vol*β(β‘π β (ran π β {0})))) |
250 | | neldifsn 4794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
β’ Β¬ 0
β (ran π β
{0}) |
251 | | i1fima2 25187 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
β’ ((π β dom β«1
β§ Β¬ 0 β (ran π
β {0})) β (volβ(β‘π β (ran π β {0}))) β
β) |
252 | 250, 251 | mpan2 689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
β’ (π β dom β«1
β (volβ(β‘π β (ran π β {0}))) β
β) |
253 | 249, 252 | eqeltrrd 2834 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ (π β dom β«1
β (vol*β(β‘π β (ran π β {0}))) β
β) |
254 | | remulcl 11191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ ((2
β β β§ (vol*β(β‘π β (ran π β {0}))) β β) β (2
Β· (vol*β(β‘π β (ran π β {0})))) β
β) |
255 | 246, 253,
254 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ (π β dom β«1
β (2 Β· (vol*β(β‘π β (ran π β {0})))) β
β) |
256 | 255 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (2 Β·
(vol*β(β‘π β (ran π β {0})))) β
β) |
257 | | 2cnd 12286 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β 2 β
β) |
258 | 253 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(vol*β(β‘π β (ran π β {0}))) β
β) |
259 | 258 | recnd 11238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(vol*β(β‘π β (ran π β {0}))) β
β) |
260 | | 2ne0 12312 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ 2 β
0 |
261 | 260 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β 2 β
0) |
262 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(vol*β(β‘π β (ran π β {0}))) β 0) |
263 | 257, 259,
261, 262 | mulne0d 11862 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (2 Β·
(vol*β(β‘π β (ran π β {0})))) β 0) |
264 | 245, 256,
263 | redivcld 12038 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β
β) |
265 | 264 | recnd 11238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β
β) |
266 | 265 | mulridd 11227 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· 1) =
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) |
267 | 265 | mul01d 11409 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· 0) =
0) |
268 | 266, 267 | ifeq12d 4548 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β if(π’ β (β‘π β (ran π β {0})),
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· 1),
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· 0)) = if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) |
269 | 242, 268 | eqtrid 2784 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· if(π’ β (β‘π β (ran π β {0})), 1, 0)) = if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) |
270 | 269 | mpteq2dv 5249 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π’ β β β¦
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· if(π’ β (β‘π β (ran π β {0})), 1, 0))) = (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) |
271 | 241, 270 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β ((β
Γ {(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))}) βf
Β· (π’ β β
β¦ if(π’ β (β‘π β (ran π β {0})), 1, 0))) = (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) |
272 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), 1, 0)) = (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), 1, 0)) |
273 | 272 | i1f1 25198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((β‘π β (ran π β {0})) β dom vol β§
(volβ(β‘π β (ran π β {0}))) β β) β (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), 1, 0)) β dom
β«1) |
274 | 247, 252,
273 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (π β dom β«1
β (π’ β β
β¦ if(π’ β (β‘π β (ran π β {0})), 1, 0)) β dom
β«1) |
275 | 274 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), 1, 0)) β dom
β«1) |
276 | 275, 264 | i1fmulc 25212 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β ((β
Γ {(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))}) βf
Β· (π’ β β
β¦ if(π’ β (β‘π β (ran π β {0})), 1, 0))) β dom
β«1) |
277 | 271, 276 | eqeltrrd 2834 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β dom
β«1) |
278 | | i1fsub 25217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π β dom β«1
β§ (π’ β β
β¦ if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β dom
β«1) β (π βf β (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) β dom
β«1) |
279 | 233, 277,
278 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π βf β
(π’ β β β¦
if(π’ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) β dom
β«1) |
280 | 232, 279 | eqeltrrd 2834 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β dom
β«1) |
281 | | iftrue 4533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))) β if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
282 | | iftrue 4533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π§ β (β‘π β (ran π β {0})) β if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
283 | 282 | breq2d 5159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π§ β (β‘π β (ran π β {0})) β (0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β 0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))))) |
284 | 283, 282 | ifbieq1d 4551 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π§ β (β‘π β (ran π β {0})) β if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) = if(0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
285 | | iftrue 4533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
286 | 284, 285 | sylan9eqr 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))) β if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) = ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
287 | 281, 286 | eqtr4d 2775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))) β if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0)) |
288 | | iffalse 4536 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (Β¬ (0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))) β if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0) |
289 | | ianor 980 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (Β¬ (0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))) β (Β¬ 0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β¨ Β¬ π§ β (β‘π β (ran π β {0})))) |
290 | 283 | ifbid 4550 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (π§ β (β‘π β (ran π β {0})) β if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) = if(0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0)) |
291 | | iffalse 4536 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) =
0) |
292 | 290, 291 | sylan9eqr 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ ((Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))) β if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) =
0) |
293 | 292 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β (π§ β (β‘π β (ran π β {0})) β if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) =
0)) |
294 | | iffalse 4536 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (Β¬
π§ β (β‘π β (ran π β {0})) β if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0) |
295 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ 0 =
0 |
296 | | eqeq1 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) β (if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0 β if(0 β€
if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) =
0)) |
297 | | eqeq1 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (0 = if(0
β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) β (0 = 0
β if(0 β€ if(π§
β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) =
0)) |
298 | 296, 297 | ifboth 4566 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’
((if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0 β§ 0 = 0)
β if(0 β€ if(π§
β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) =
0) |
299 | 294, 295,
298 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (Β¬
π§ β (β‘π β (ran π β {0})) β if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) =
0) |
300 | 293, 299 | pm2.61d1 180 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) =
0) |
301 | 300, 299 | jaoi 855 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β¨ Β¬ π§ β (β‘π β (ran π β {0}))) β if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) =
0) |
302 | 289, 301 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (Β¬ (0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))) β if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) =
0) |
303 | 288, 302 | eqtr4d 2775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (Β¬ (0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))) β if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0)) |
304 | 287, 303 | pm2.61i 182 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0) |
305 | | eleq1w 2816 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π’ = π§ β (π’ β (β‘π β (ran π β {0})) β π§ β (β‘π β (ran π β {0})))) |
306 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π’ = π§ β (πβπ’) = (πβπ§)) |
307 | 306 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π’ = π§ β ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) = ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
308 | 305, 307 | ifbieq1d 4551 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π’ = π§ β if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
309 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) = (π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
310 | | ovex 7438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β V |
311 | 310, 105 | ifex 4577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β
V |
312 | 308, 309,
311 | fvmpt 6995 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (π§ β β β ((π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))βπ§) = if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
313 | 312 | breq2d 5159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (π§ β β β (0 β€
((π’ β β β¦
if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))βπ§) β 0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) |
314 | 313, 312 | ifbieq1d 4551 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (π§ β β β if(0 β€
((π’ β β β¦
if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))βπ§), ((π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))βπ§), 0) = if(0 β€ if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), if(π§ β (β‘π β (ran π β {0})), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0), 0)) |
315 | 304, 314 | eqtr4id 2791 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π§ β β β if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = if(0 β€ ((π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))βπ§), ((π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))βπ§), 0)) |
316 | 315 | mpteq2ia 5250 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) = (π§ β β β¦ if(0 β€ ((π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))βπ§), ((π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))βπ§), 0)) |
317 | 316 | i1fpos 25215 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((π’ β β β¦ if(π’ β (β‘π β (ran π β {0})), ((πβπ’) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β dom
β«1 β (π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β dom
β«1) |
318 | 280, 317 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β dom
β«1) |
319 | 195, 318 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β dom
β«1) |
320 | 195, 264 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β
β) |
321 | 8 | ad2antrl 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β (β«1βπ) β
β) |
322 | 321, 194,
243 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β
((β«1βπ) β π) β β) |
323 | 322 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((β«1βπ) β π) β β) |
324 | 255 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π β dom β«1
β§ (π
βr β€ πΉ
β§ π =
(β«1βπ))) β (2 Β· (vol*β(β‘π β (ran π β {0})))) β
β) |
325 | 324 | ad3antlr 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (2 Β·
(vol*β(β‘π β (ran π β {0})))) β
β) |
326 | | simprl 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β π < (β«1βπ)) |
327 | | simprr 771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β π β β) |
328 | 141 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β
(β«1βπ)
β β) |
329 | 327, 328 | posdifd 11797 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β (π < (β«1βπ) β 0 <
((β«1βπ) β π))) |
330 | 326, 329 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β 0 <
((β«1βπ) β π)) |
331 | 330 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β 0 <
((β«1βπ) β π)) |
332 | 253 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((π β dom β«1
β§ (π
βr β€ πΉ
β§ π =
(β«1βπ))) β (vol*β(β‘π β (ran π β {0}))) β
β) |
333 | 332 | ad3antlr 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(vol*β(β‘π β (ran π β {0}))) β
β) |
334 | | mblss 25039 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((β‘π β (ran π β {0})) β dom vol β (β‘π β (ran π β {0})) β
β) |
335 | | ovolge0 24989 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((β‘π β (ran π β {0})) β β β 0 β€
(vol*β(β‘π β (ran π β {0})))) |
336 | 247, 334,
335 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π β dom β«1
β 0 β€ (vol*β(β‘π β (ran π β {0})))) |
337 | | ltlen 11311 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ ((0
β β β§ (vol*β(β‘π β (ran π β {0}))) β β) β (0
< (vol*β(β‘π β (ran π β {0}))) β (0 β€
(vol*β(β‘π β (ran π β {0}))) β§ (vol*β(β‘π β (ran π β {0}))) β 0))) |
338 | 48, 253, 337 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π β dom β«1
β (0 < (vol*β(β‘π β (ran π β {0}))) β (0 β€
(vol*β(β‘π β (ran π β {0}))) β§ (vol*β(β‘π β (ran π β {0}))) β 0))) |
339 | 338 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π β dom β«1
β ((0 β€ (vol*β(β‘π β (ran π β {0}))) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β 0 <
(vol*β(β‘π β (ran π β {0}))))) |
340 | 336, 339 | mpand 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (π β dom β«1
β ((vol*β(β‘π β (ran π β {0}))) β 0 β 0 <
(vol*β(β‘π β (ran π β {0}))))) |
341 | 340 | ad2antrl 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β ((vol*β(β‘π β (ran π β {0}))) β 0 β 0 <
(vol*β(β‘π β (ran π β {0}))))) |
342 | 341 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β 0 <
(vol*β(β‘π β (ran π β {0})))) |
343 | 342 | adantlr 713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β 0 <
(vol*β(β‘π β (ran π β {0})))) |
344 | | 2pos 12311 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ 0 <
2 |
345 | | mulgt0 11287 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((2
β β β§ 0 < 2) β§ ((vol*β(β‘π β (ran π β {0}))) β β β§ 0 <
(vol*β(β‘π β (ran π β {0}))))) β 0 < (2 Β·
(vol*β(β‘π β (ran π β {0}))))) |
346 | 246, 344,
345 | mpanl12 700 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’
(((vol*β(β‘π β (ran π β {0}))) β β β§ 0 <
(vol*β(β‘π β (ran π β {0})))) β 0 < (2 Β·
(vol*β(β‘π β (ran π β {0}))))) |
347 | 333, 343,
346 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β 0 < (2
Β· (vol*β(β‘π β (ran π β {0}))))) |
348 | 323, 325,
331, 347 | divgt0d 12145 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β 0 <
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) |
349 | 320, 348 | elrpd 13009 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β
β+) |
350 | | simprl 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π β dom β«1
β§ (π
βr β€ πΉ
β§ π =
(β«1βπ))) β π βr β€ πΉ) |
351 | 350 | ad3antlr 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π βr β€ πΉ) |
352 | | ffn 6714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (πΉ:ββΆ(0[,]+β)
β πΉ Fn
β) |
353 | 35, 180 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (π β dom β«1
β π Fn
β) |
354 | 353 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π β dom β«1
β§ (π
βr β€ πΉ
β§ π =
(β«1βπ))) β π Fn β) |
355 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((πΉ Fn β β§ π Fn β) β π Fn β) |
356 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((πΉ Fn β β§ π Fn β) β πΉ Fn β) |
357 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((πΉ Fn β β§ π Fn β) β β
β V) |
358 | | inidm 4217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (β
β© β) = β |
359 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((πΉ Fn β β§ π Fn β) β§ π§ β β) β (πβπ§) = (πβπ§)) |
360 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((πΉ Fn β β§ π Fn β) β§ π§ β β) β (πΉβπ§) = (πΉβπ§)) |
361 | 355, 356,
357, 357, 358, 359, 360 | ofrfval 7676 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((πΉ Fn β β§ π Fn β) β (π βr β€ πΉ β βπ§ β β (πβπ§) β€ (πΉβπ§))) |
362 | 352, 354,
361 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β (π βr β€ πΉ β βπ§ β β (πβπ§) β€ (πΉβπ§))) |
363 | 362 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π βr β€ πΉ β βπ§ β β (πβπ§) β€ (πΉβπ§))) |
364 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β dom β«1
β§ (π
βr β€ πΉ
β§ π =
(β«1βπ))) β π β dom
β«1) |
365 | 364 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β (πΉ:ββΆ(0[,]+β) β§ π β dom
β«1)) |
366 | 365, 194 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β ((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β
β)) |
367 | | breq1 5150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (0 =
if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β (0 β€ (πΉβπ§) β if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β€ (πΉβπ§))) |
368 | | breq1 5150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) = if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β ((if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ (πΉβπ§) β if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β€ (πΉβπ§))) |
369 | | simplll 773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π
β β) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β πΉ:ββΆ(0[,]+β)) |
370 | 369 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β (πΉβπ§) β (0[,]+β)) |
371 | 370, 100 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β ((πΉβπ§) β β* β§ 0 β€
(πΉβπ§))) |
372 | 371 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β 0 β€
(πΉβπ§)) |
373 | 372 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’
(((((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ (πβπ§) β€ (πΉβπ§)) β§ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0) β 0 β€
(πΉβπ§)) |
374 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) = if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β (((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) = (if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
375 | 374 | breq1d 5157 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) = if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β ((((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ (πΉβπ§) β (if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ (πΉβπ§))) |
376 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (0 =
if((0 β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β (0 +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) = (if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
377 | 376 | breq1d 5157 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (0 =
if((0 β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β ((0 +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ (πΉβπ§) β (if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ (πΉβπ§))) |
378 | 35 | ad3antlr 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π
β β) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π:ββΆβ) |
379 | 378 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β (πβπ§) β β) |
380 | 379 | recnd 11238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β (πβπ§) β β) |
381 | 244 | recnd 11238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
β’ ((π β dom β«1
β§ π β β)
β ((β«1βπ) β π) β β) |
382 | 381 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((β«1βπ) β π) β β) |
383 | 255 | recnd 11238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
β’ (π β dom β«1
β (2 Β· (vol*β(β‘π β (ran π β {0})))) β
β) |
384 | 383 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (2 Β·
(vol*β(β‘π β (ran π β {0})))) β
β) |
385 | 382, 384,
263 | divcld 11986 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β
β) |
386 | 385 | adantlll 716 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β dom
β«1) β§ π
β β) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β
β) |
387 | 386 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β
β) |
388 | 380, 387 | npcand 11571 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β (((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) = (πβπ§)) |
389 | 388 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’
((((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ (πβπ§) β€ (πΉβπ§)) β (((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) = (πβπ§)) |
390 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’
((((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ (πβπ§) β€ (πΉβπ§)) β (πβπ§) β€ (πΉβπ§)) |
391 | 389, 390 | eqbrtrd 5169 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
((((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ (πβπ§) β€ (πΉβπ§)) β (((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ (πΉβπ§)) |
392 | 391 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’
((((((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ (πβπ§) β€ (πΉβπ§)) β§ Β¬ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0) β§ (0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0})))) β (((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ (πΉβπ§)) |
393 | 288 | pm2.24d 151 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (Β¬ (0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))) β (Β¬ if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0 β (0 +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ (πΉβπ§))) |
394 | 393 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ ((Β¬
if((0 β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0 β§ Β¬ (0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0})))) β (0 +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ (πΉβπ§)) |
395 | 394 | adantll 712 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’
((((((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ (πβπ§) β€ (πΉβπ§)) β§ Β¬ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0) β§ Β¬ (0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0})))) β (0 +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ (πΉβπ§)) |
396 | 375, 377,
392, 395 | ifbothda 4565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’
(((((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ (πβπ§) β€ (πΉβπ§)) β§ Β¬ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0) β (if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ (πΉβπ§)) |
397 | 367, 368,
373, 396 | ifbothda 4565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’
((((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ (πβπ§) β€ (πΉβπ§)) β if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β€ (πΉβπ§)) |
398 | 397 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β dom β«1)
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β ((πβπ§) β€ (πΉβπ§) β if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β€ (πΉβπ§))) |
399 | 366, 398 | sylanl1 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
(((((πΉ:ββΆ(0[,]+β) β§ (π β dom β«1
β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β ((πβπ§) β€ (πΉβπ§) β if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β€ (πΉβπ§))) |
400 | 399 | ralimdva 3167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (βπ§ β β (πβπ§) β€ (πΉβπ§) β βπ§ β β if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β€ (πΉβπ§))) |
401 | 363, 400 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π βr β€ πΉ β βπ§ β β if(if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β€ (πΉβπ§))) |
402 | 351, 401 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β βπ§ β β if(if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β€ (πΉβπ§)) |
403 | | ovex 7438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β V |
404 | 105, 403 | ifex 4577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ if(if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β V |
405 | 404 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((πΉ:ββΆ(0[,]+β)
β§ π§ β β)
β if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β
V) |
406 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (πΉ:ββΆ(0[,]+β)
β (π§ β β
β¦ if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))))) = (π§ β β β¦ if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))))) |
407 | 104, 405,
99, 406, 67 | ofrfval2 7687 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (πΉ:ββΆ(0[,]+β)
β ((π§ β β
β¦ if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))))) βr β€
πΉ β βπ§ β β if(if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β€ (πΉβπ§))) |
408 | 407 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β ((π§ β β β¦ if(if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))))) βr β€
πΉ β βπ§ β β if(if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β€ (πΉβπ§))) |
409 | 402, 408 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π§ β β β¦ if(if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))))) βr β€
πΉ) |
410 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (π¦ =
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β (if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) + π¦) = (if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
411 | 410 | ifeq2d 4547 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π¦ =
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β if(if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) + π¦)) = if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))))) |
412 | 411 | mpteq2dv 5249 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π¦ =
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β (π§ β β β¦ if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) + π¦))) = (π§ β β β¦ if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))))) |
413 | 412 | breq1d 5157 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π¦ =
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β ((π§ β β β¦ if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) + π¦))) βr β€ πΉ β (π§ β β β¦ if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))))) βr β€
πΉ)) |
414 | 413 | rspcev 3612 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
(((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β β+
β§ (π§ β β
β¦ if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) +
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))))) βr β€
πΉ) β βπ¦ β β+
(π§ β β β¦
if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) + π¦))) βr β€ πΉ) |
415 | 349, 409,
414 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β βπ¦ β β+
(π§ β β β¦
if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) + π¦))) βr β€ πΉ) |
416 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) = π β (β«1β(π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) =
(β«1βπ)) |
417 | 416 | eqcoms 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) =
(β«1βπ)) |
418 | 417 | biantrud 532 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β (βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β (βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) =
(β«1βπ)))) |
419 | | nfmpt1 5255 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’
β²π§(π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
420 | 419 | nfeq2 2920 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
β²π§ π = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
421 | | fveq1 6887 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β (πβπ§) = ((π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))βπ§)) |
422 | 310, 105 | ifex 4577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β
V |
423 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
424 | 423 | fvmpt2 7006 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((π§ β β β§ if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β V) β
((π§ β β β¦
if((0 β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))βπ§) = if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
425 | 422, 424 | mpan2 689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π§ β β β ((π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))βπ§) = if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
426 | 421, 425 | sylan9eq 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β§ π§ β β) β (πβπ§) = if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
427 | 426 | eqeq1d 2734 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β§ π§ β β) β ((πβπ§) = 0 β if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0)) |
428 | 426 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β§ π§ β β) β ((πβπ§) + π¦) = (if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) + π¦)) |
429 | 427, 428 | ifbieq2d 4553 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((π = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β§ π§ β β) β
if((πβπ§) = 0, 0, ((πβπ§) + π¦)) = if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) + π¦))) |
430 | 420, 429 | mpteq2da 5245 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β (π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) = (π§ β β β¦ if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) + π¦)))) |
431 | 430 | breq1d 5157 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β ((π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β (π§ β β β¦ if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) + π¦))) βr β€ πΉ)) |
432 | 431 | rexbidv 3178 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β (βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β βπ¦ β β+
(π§ β β β¦
if(if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) + π¦))) βr β€ πΉ)) |
433 | 418, 432 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β ((βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) =
(β«1βπ)) β βπ¦ β β+ (π§ β β β¦ if(if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) + π¦))) βr β€ πΉ)) |
434 | 433 | rspcev 3612 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β dom
β«1 β§ βπ¦ β β+ (π§ β β β¦ if(if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0, 0, (if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) + π¦))) βr β€ πΉ) β βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) =
(β«1βπ))) |
435 | 319, 415,
434 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) =
(β«1βπ))) |
436 | | simplrr 776 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π β
β) |
437 | 199 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β V) |
438 | 235, 105 | ifex 4577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ if(π§ β (β‘π β (ran π β {0})), 1, 0) β
V |
439 | 438 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β if(π§ β (β‘π β (ran π β {0})), 1, 0) β
V) |
440 | | fconstmpt 5736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (β
Γ {(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))}) = (π§ β β β¦
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) |
441 | 440 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (β
Γ {(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))}) = (π§ β β β¦
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
442 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})), 1, 0)) = (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})), 1, 0))) |
443 | 196, 437,
439, 441, 442 | offval2 7686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β ((β
Γ {(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))}) βf
Β· (π§ β β
β¦ if(π§ β (β‘π β (ran π β {0})), 1, 0))) = (π§ β β β¦
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· if(π§ β (β‘π β (ran π β {0})), 1, 0)))) |
444 | | ovif2 7503 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· if(π§ β (β‘π β (ran π β {0})), 1, 0)) = if(π§ β (β‘π β (ran π β {0})),
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· 1),
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β·
0)) |
445 | 266, 267 | ifeq12d 4548 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β if(π§ β (β‘π β (ran π β {0})),
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· 1),
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· 0)) = if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) |
446 | 444, 445 | eqtrid 2784 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· if(π§ β (β‘π β (ran π β {0})), 1, 0)) = if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) |
447 | 446 | mpteq2dv 5249 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π§ β β β¦
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· if(π§ β (β‘π β (ran π β {0})), 1, 0))) = (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) |
448 | 443, 447 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β ((β
Γ {(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))}) βf
Β· (π§ β β
β¦ if(π§ β (β‘π β (ran π β {0})), 1, 0))) = (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) |
449 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})), 1, 0)) = (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})), 1, 0)) |
450 | 449 | i1f1 25198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((β‘π β (ran π β {0})) β dom vol β§
(volβ(β‘π β (ran π β {0}))) β β) β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})), 1, 0)) β dom
β«1) |
451 | 247, 252,
450 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π β dom β«1
β (π§ β β
β¦ if(π§ β (β‘π β (ran π β {0})), 1, 0)) β dom
β«1) |
452 | 451 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})), 1, 0)) β dom
β«1) |
453 | 452, 264 | i1fmulc 25212 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β ((β
Γ {(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))}) βf
Β· (π§ β β
β¦ if(π§ β (β‘π β (ran π β {0})), 1, 0))) β dom
β«1) |
454 | 448, 453 | eqeltrrd 2834 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β dom
β«1) |
455 | | i1fsub 25217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((π β dom β«1
β§ (π§ β β
β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β dom
β«1) β (π βf β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) β dom
β«1) |
456 | 233, 454,
455 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π βf β
(π§ β β β¦
if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) β dom
β«1) |
457 | | itg1cl 25193 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((π βf β
(π§ β β β¦
if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) β dom
β«1 β (β«1β(π βf β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)))) β
β) |
458 | 456, 457 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(β«1β(π
βf β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)))) β
β) |
459 | 458 | adantlrl 718 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(β«1β(π
βf β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)))) β
β) |
460 | 318 | adantlrl 718 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β dom
β«1) |
461 | | itg1cl 25193 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β dom
β«1 β (β«1β(π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) β
β) |
462 | 460, 461 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) β
β) |
463 | | simplrl 775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π <
(β«1βπ)) |
464 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β dom β«1
β§ π β β)
β π β
β) |
465 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β dom β«1
β§ π β β)
β (β«1βπ) β β) |
466 | 97 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β dom β«1
β§ π β β)
β 2 β β+) |
467 | 464, 465,
466 | ltdiv1d 13057 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π β dom β«1
β§ π β β)
β (π <
(β«1βπ)
β (π / 2) <
((β«1βπ) / 2))) |
468 | | recn 11196 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (π β β β π β
β) |
469 | 468 | 2halvesd 12454 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (π β β β ((π / 2) + (π / 2)) = π) |
470 | 469 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π β β β (((π / 2) + (π / 2)) β (π / 2)) = (π β (π / 2))) |
471 | 468 | halfcld 12453 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (π β β β (π / 2) β
β) |
472 | 471, 471 | pncand 11568 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π β β β (((π / 2) + (π / 2)) β (π / 2)) = (π / 2)) |
473 | 470, 472 | eqtr3d 2774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π β β β (π β (π / 2)) = (π / 2)) |
474 | 473 | breq1d 5157 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π β β β ((π β (π / 2)) < ((β«1βπ) / 2) β (π / 2) <
((β«1βπ) / 2))) |
475 | 474 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π β dom β«1
β§ π β β)
β ((π β (π / 2)) <
((β«1βπ) / 2) β (π / 2) < ((β«1βπ) / 2))) |
476 | | rehalfcl 12434 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π β β β (π / 2) β
β) |
477 | 476 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β dom β«1
β§ π β β)
β (π / 2) β
β) |
478 | 8 | rehalfcld 12455 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π β dom β«1
β ((β«1βπ) / 2) β β) |
479 | 478 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β dom β«1
β§ π β β)
β ((β«1βπ) / 2) β β) |
480 | 464, 477,
479 | ltsubaddd 11806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π β dom β«1
β§ π β β)
β ((π β (π / 2)) <
((β«1βπ) / 2) β π < (((β«1βπ) / 2) + (π / 2)))) |
481 | 467, 475,
480 | 3bitr2d 306 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π β dom β«1
β§ π β β)
β (π <
(β«1βπ)
β π <
(((β«1βπ) / 2) + (π / 2)))) |
482 | 481 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π <
(β«1βπ)
β π <
(((β«1βπ) / 2) + (π / 2)))) |
483 | 482 | adantlrl 718 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π <
(β«1βπ)
β π <
(((β«1βπ) / 2) + (π / 2)))) |
484 | 463, 483 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π <
(((β«1βπ) / 2) + (π / 2))) |
485 | 452, 264 | itg1mulc 25213 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(β«1β((β Γ {(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))}) βf
Β· (π§ β β
β¦ if(π§ β (β‘π β (ran π β {0})), 1, 0)))) =
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β·
(β«1β(π§
β β β¦ if(π§
β (β‘π β (ran π β {0})), 1, 0))))) |
486 | 448 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(β«1β((β Γ {(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))}) βf
Β· (π§ β β
β¦ if(π§ β (β‘π β (ran π β {0})), 1, 0)))) =
(β«1β(π§
β β β¦ if(π§
β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)))) |
487 | 449 | itg11 25199 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (((β‘π β (ran π β {0})) β dom vol β§
(volβ(β‘π β (ran π β {0}))) β β) β
(β«1β(π§
β β β¦ if(π§
β (β‘π β (ran π β {0})), 1, 0))) = (volβ(β‘π β (ran π β {0})))) |
488 | 247, 252,
487 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π β dom β«1
β (β«1β(π§ β β β¦ if(π§ β (β‘π β (ran π β {0})), 1, 0))) = (volβ(β‘π β (ran π β {0})))) |
489 | 488 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π β dom β«1
β ((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β·
(β«1β(π§
β β β¦ if(π§
β (β‘π β (ran π β {0})), 1, 0)))) =
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· (volβ(β‘π β (ran π β {0}))))) |
490 | 489 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β·
(β«1β(π§
β β β¦ if(π§
β (β‘π β (ran π β {0})), 1, 0)))) =
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· (volβ(β‘π β (ran π β {0}))))) |
491 | 252 | recnd 11238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π β dom β«1
β (volβ(β‘π β (ran π β {0}))) β
β) |
492 | 491 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(volβ(β‘π β (ran π β {0}))) β
β) |
493 | 265, 492 | mulcomd 11231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β· (volβ(β‘π β (ran π β {0})))) = ((volβ(β‘π β (ran π β {0}))) Β·
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
494 | 249 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(volβ(β‘π β (ran π β {0}))) = (vol*β(β‘π β (ran π β {0})))) |
495 | 494 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((volβ(β‘π β (ran π β {0}))) Β·
((β«1βπ) β π)) = ((vol*β(β‘π β (ran π β {0}))) Β·
((β«1βπ) β π))) |
496 | 259, 382 | mulcomd 11231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((vol*β(β‘π β (ran π β {0}))) Β·
((β«1βπ) β π)) = (((β«1βπ) β π) Β· (vol*β(β‘π β (ran π β {0}))))) |
497 | 495, 496 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((volβ(β‘π β (ran π β {0}))) Β·
((β«1βπ) β π)) = (((β«1βπ) β π) Β· (vol*β(β‘π β (ran π β {0}))))) |
498 | 497 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(((volβ(β‘π β (ran π β {0}))) Β·
((β«1βπ) β π)) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) =
((((β«1βπ) β π) Β· (vol*β(β‘π β (ran π β {0})))) / (2 Β·
(vol*β(β‘π β (ran π β {0})))))) |
499 | 492, 382,
384, 263 | divassd 12021 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(((volβ(β‘π β (ran π β {0}))) Β·
((β«1βπ) β π)) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) = ((volβ(β‘π β (ran π β {0}))) Β·
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
500 | 382, 257,
259, 261, 262 | divcan5rd 12013 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((((β«1βπ) β π) Β· (vol*β(β‘π β (ran π β {0})))) / (2 Β·
(vol*β(β‘π β (ran π β {0}))))) =
(((β«1βπ) β π) / 2)) |
501 | 498, 499,
500 | 3eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((volβ(β‘π β (ran π β {0}))) Β·
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) =
(((β«1βπ) β π) / 2)) |
502 | 490, 493,
501 | 3eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) Β·
(β«1β(π§
β β β¦ if(π§
β (β‘π β (ran π β {0})), 1, 0)))) =
(((β«1βπ) β π) / 2)) |
503 | 485, 486,
502 | 3eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(β«1β(π§
β β β¦ if(π§
β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) =
(((β«1βπ) β π) / 2)) |
504 | 503 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((β«1βπ) β (β«1β(π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)))) =
((β«1βπ) β (((β«1βπ) β π) / 2))) |
505 | | itg1sub 25218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π β dom β«1
β§ (π§ β β
β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β dom
β«1) β (β«1β(π βf β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)))) =
((β«1βπ) β (β«1β(π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))))) |
506 | 233, 454,
505 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(β«1β(π
βf β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)))) =
((β«1βπ) β (β«1β(π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))))) |
507 | 8 | recnd 11238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π β dom β«1
β (β«1βπ) β β) |
508 | 507 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(β«1βπ)
β β) |
509 | 468 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π β
β) |
510 | 508, 509,
257, 261 | divsubdird 12025 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(((β«1βπ) β π) / 2) = (((β«1βπ) / 2) β (π / 2))) |
511 | 510 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((β«1βπ) β (((β«1βπ) β π) / 2)) = ((β«1βπ) β
(((β«1βπ) / 2) β (π / 2)))) |
512 | 507 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β dom β«1
β§ π β β)
β (β«1βπ) β β) |
513 | 512 | halfcld 12453 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β dom β«1
β§ π β β)
β ((β«1βπ) / 2) β β) |
514 | 471 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β dom β«1
β§ π β β)
β (π / 2) β
β) |
515 | 512, 513,
514 | subsubd 11595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π β dom β«1
β§ π β β)
β ((β«1βπ) β (((β«1βπ) / 2) β (π / 2))) =
(((β«1βπ) β ((β«1βπ) / 2)) + (π / 2))) |
516 | 515 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
((β«1βπ) β (((β«1βπ) / 2) β (π / 2))) =
(((β«1βπ) β ((β«1βπ) / 2)) + (π / 2))) |
517 | 507 | 2halvesd 12454 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π β dom β«1
β (((β«1βπ) / 2) + ((β«1βπ) / 2)) =
(β«1βπ)) |
518 | 517 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π β dom β«1
β ((((β«1βπ) / 2) + ((β«1βπ) / 2)) β
((β«1βπ) / 2)) = ((β«1βπ) β
((β«1βπ) / 2))) |
519 | 507 | halfcld 12453 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π β dom β«1
β ((β«1βπ) / 2) β β) |
520 | 519, 519 | pncand 11568 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π β dom β«1
β ((((β«1βπ) / 2) + ((β«1βπ) / 2)) β
((β«1βπ) / 2)) = ((β«1βπ) / 2)) |
521 | 518, 520 | eqtr3d 2774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π β dom β«1
β ((β«1βπ) β ((β«1βπ) / 2)) =
((β«1βπ) / 2)) |
522 | 521 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (π β dom β«1
β (((β«1βπ) β ((β«1βπ) / 2)) + (π / 2)) = (((β«1βπ) / 2) + (π / 2))) |
523 | 522 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(((β«1βπ) β ((β«1βπ) / 2)) + (π / 2)) = (((β«1βπ) / 2) + (π / 2))) |
524 | 511, 516,
523 | 3eqtrrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(((β«1βπ) / 2) + (π / 2)) = ((β«1βπ) β
(((β«1βπ) β π) / 2))) |
525 | 504, 506,
524 | 3eqtr4d 2782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(β«1β(π
βf β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)))) =
(((β«1βπ) / 2) + (π / 2))) |
526 | 525 | adantlrl 718 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(β«1β(π
βf β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)))) =
(((β«1βπ) / 2) + (π / 2))) |
527 | 484, 526 | breqtrrd 5175 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π <
(β«1β(π
βf β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))))) |
528 | 456 | adantlrl 718 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π βf β
(π§ β β β¦
if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) β dom
β«1) |
529 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β ((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0)) |
530 | 529 | adantlrl 718 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β ((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0)) |
531 | 233, 36 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β (πβπ§) β β) |
532 | 264 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))) β
β) |
533 | 531, 532 | resubcld 11638 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β
β) |
534 | 533 | leidd 11776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
535 | 534 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’
(((((π β dom
β«1 β§ π
β β) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ 0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
536 | 285 | breq2d 5159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β (((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))))) |
537 | 536 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’
(((((π β dom
β«1 β§ π
β β) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ 0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β (((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))))) |
538 | 535, 537 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
(((((π β dom
β«1 β§ π
β β) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ 0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
539 | 533 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’
(((((π β dom
β«1 β§ π
β β) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β
β) |
540 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’
(((((π β dom
β«1 β§ π
β β) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β 0 β
β) |
541 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β 0 β
β) |
542 | 533, 541 | ltnled 11357 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β (((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) < 0 β Β¬ 0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))))) |
543 | 542 | biimpar 478 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’
(((((π β dom
β«1 β§ π
β β) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) < 0) |
544 | 539, 540,
543 | ltled 11358 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’
(((((π β dom
β«1 β§ π
β β) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ 0) |
545 | | iffalse 4536 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ (Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0) |
546 | 545 | breq2d 5159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ (Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β (((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ 0)) |
547 | 546 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’
(((((π β dom
β«1 β§ π
β β) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β (((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ 0)) |
548 | 544, 547 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
(((((π β dom
β«1 β§ π
β β) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
549 | 538, 548 | pm2.61dan 811 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((((π β dom β«1
β§ π β β)
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
550 | 530, 549 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
551 | 550 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’
(((((π β dom
β«1 β§ (π
< (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ π§ β (β‘π β (ran π β {0}))) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
552 | | iftrue 4533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π§ β (β‘π β (ran π β {0})) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0) =
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) |
553 | 552 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π§ β (β‘π β (ran π β {0})) β ((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) = ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))))) |
554 | | iba 528 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (π§ β (β‘π β (ran π β {0})) β (0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β (0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))))) |
555 | 554 | bicomd 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (π§ β (β‘π β (ran π β {0})) β ((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))) β 0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))))) |
556 | 555 | ifbid 4550 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π§ β (β‘π β (ran π β {0})) β if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
557 | 553, 556 | breq12d 5160 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π§ β (β‘π β (ran π β {0})) β (((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β€ if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) |
558 | 557 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’
(((((π β dom
β«1 β§ (π
< (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ π§ β (β‘π β (ran π β {0}))) β (((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β€ if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β€ if(0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) |
559 | 551, 558 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’
(((((π β dom
β«1 β§ (π
< (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ π§ β (β‘π β (ran π β {0}))) β ((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β€ if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
560 | 35 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π:ββΆβ) |
561 | 170 | eleq2d 2819 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
β’ (π:ββΆβ β
(π§ β (β‘π β (ran π β {0})) β π§ β ((β‘π β ran π) β (β‘π β {0})))) |
562 | | eldif 3957 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
β’ (π§ β ((β‘π β ran π) β (β‘π β {0})) β (π§ β (β‘π β ran π) β§ Β¬ π§ β (β‘π β {0}))) |
563 | 561, 562 | bitrdi 286 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
β’ (π:ββΆβ β
(π§ β (β‘π β (ran π β {0})) β (π§ β (β‘π β ran π) β§ Β¬ π§ β (β‘π β {0})))) |
564 | 563 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ (π:ββΆβ β
(Β¬ π§ β (β‘π β (ran π β {0})) β Β¬ (π§ β (β‘π β ran π) β§ Β¬ π§ β (β‘π β {0})))) |
565 | 564 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ ((π:ββΆβ β§
π§ β β) β
(Β¬ π§ β (β‘π β (ran π β {0})) β Β¬ (π§ β (β‘π β ran π) β§ Β¬ π§ β (β‘π β {0})))) |
566 | | pm4.53 984 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ (Β¬
(π§ β (β‘π β ran π) β§ Β¬ π§ β (β‘π β {0})) β (Β¬ π§ β (β‘π β ran π) β¨ π§ β (β‘π β {0}))) |
567 | 207 | eleq2d 2819 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
β’ (π:ββΆβ β
(π§ β (β‘π β ran π) β π§ β β)) |
568 | 567 | biimpar 478 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
β’ ((π:ββΆβ β§
π§ β β) β
π§ β (β‘π β ran π)) |
569 | 568 | pm2.24d 151 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
β’ ((π:ββΆβ β§
π§ β β) β
(Β¬ π§ β (β‘π β ran π) β (πβπ§) = 0)) |
570 | 181 | simplbda 500 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
β’ ((π Fn β β§ π§ β (β‘π β {0})) β (πβπ§) = 0) |
571 | 570 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
β’ (π Fn β β (π§ β (β‘π β {0}) β (πβπ§) = 0)) |
572 | 180, 571 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
β’ (π:ββΆβ β
(π§ β (β‘π β {0}) β (πβπ§) = 0)) |
573 | 572 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
β’ ((π:ββΆβ β§
π§ β β) β
(π§ β (β‘π β {0}) β (πβπ§) = 0)) |
574 | 569, 573 | jaod 857 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ ((π:ββΆβ β§
π§ β β) β
((Β¬ π§ β (β‘π β ran π) β¨ π§ β (β‘π β {0})) β (πβπ§) = 0)) |
575 | 566, 574 | biimtrid 241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ ((π:ββΆβ β§
π§ β β) β
(Β¬ (π§ β (β‘π β ran π) β§ Β¬ π§ β (β‘π β {0})) β (πβπ§) = 0)) |
576 | 565, 575 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’ ((π:ββΆβ β§
π§ β β) β
(Β¬ π§ β (β‘π β (ran π β {0})) β (πβπ§) = 0)) |
577 | 576 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’ (((π:ββΆβ β§
π§ β β) β§
Β¬ π§ β (β‘π β (ran π β {0}))) β (πβπ§) = 0) |
578 | 560, 577 | sylanl1 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
(((((π β dom
β«1 β§ (π
< (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ Β¬
π§ β (β‘π β (ran π β {0}))) β (πβπ§) = 0) |
579 | 578 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’
(((((π β dom
β«1 β§ (π
< (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ Β¬
π§ β (β‘π β (ran π β {0}))) β ((πβπ§) β 0) = (0 β
0)) |
580 | 579, 224 | eqtrdi 2788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’
(((((π β dom
β«1 β§ (π
< (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ Β¬
π§ β (β‘π β (ran π β {0}))) β ((πβπ§) β 0) = 0) |
581 | 580, 30 | eqbrtrdi 5186 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’
(((((π β dom
β«1 β§ (π
< (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ Β¬
π§ β (β‘π β (ran π β {0}))) β ((πβπ§) β 0) β€ 0) |
582 | | iffalse 4536 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ (Β¬
π§ β (β‘π β (ran π β {0})) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0) = 0) |
583 | 582 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (Β¬
π§ β (β‘π β (ran π β {0})) β ((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) = ((πβπ§) β 0)) |
584 | 289, 288 | sylbir 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’ ((Β¬ 0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β¨ Β¬ π§ β (β‘π β (ran π β {0}))) β if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0) |
585 | 584 | olcs 874 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (Β¬
π§ β (β‘π β (ran π β {0})) β if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) = 0) |
586 | 583, 585 | breq12d 5160 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (Β¬
π§ β (β‘π β (ran π β {0})) β (((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β€ if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β ((πβπ§) β 0) β€ 0)) |
587 | 586 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’
(((((π β dom
β«1 β§ (π
< (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ Β¬
π§ β (β‘π β (ran π β {0}))) β (((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β€ if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β ((πβπ§) β 0) β€ 0)) |
588 | 581, 587 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’
(((((π β dom
β«1 β§ (π
< (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β§ Β¬
π§ β (β‘π β (ran π β {0}))) β ((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β€ if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
589 | 559, 588 | pm2.61dan 811 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β ((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β€ if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
590 | 589 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β βπ§ β β ((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β€ if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) |
591 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β β β
V) |
592 | | ovex 7438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β
V |
593 | 592 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β ((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β
V) |
594 | 422 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0) β
V) |
595 | | fvex 6901 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (πβπ§) β V |
596 | 595 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β (πβπ§) β V) |
597 | 199, 105 | ifex 4577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0) β
V |
598 | 597 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β§ π§ β β) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0) β
V) |
599 | 70 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π = (π§ β β β¦ (πβπ§))) |
600 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) = (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) |
601 | 591, 596,
598, 599, 600 | offval2 7686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π βf β
(π§ β β β¦
if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) = (π§ β β β¦ ((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)))) |
602 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) = (π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) |
603 | 591, 593,
594, 601, 602 | ofrfval2 7687 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β ((π βf β
(π§ β β β¦
if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) βr
β€ (π§ β β
β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β βπ§ β β ((πβπ§) β if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)) β€ if((0 β€
((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) |
604 | 590, 603 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β (π βf β
(π§ β β β¦
if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) βr
β€ (π§ β β
β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) |
605 | | itg1le 25222 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (((π βf β
(π§ β β β¦
if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) β dom
β«1 β§ (π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)) β dom
β«1 β§ (π
βf β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0))) βr
β€ (π§ β β
β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) β
(β«1β(π
βf β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)))) β€
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)))) |
606 | 528, 460,
604, 605 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β
(β«1β(π
βf β (π§ β β β¦ if(π§ β (β‘π β (ran π β {0})),
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0}))))), 0)))) β€
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)))) |
607 | 436, 459,
462, 527, 606 | ltletrd 11370 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β dom β«1
β§ (π <
(β«1βπ)
β§ π β β))
β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π <
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)))) |
608 | 607 | adantllr 717 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((((π β dom β«1
β§ (π
βr β€ πΉ
β§ π =
(β«1βπ))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π <
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)))) |
609 | 608 | adantlll 716 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β π <
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)))) |
610 | | fvex 6901 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(β«1β(π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) β
V |
611 | | eqeq1 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π =
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) β (π =
(β«1βπ)
β (β«1β(π§ β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) =
(β«1βπ))) |
612 | 611 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π =
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) β
((βπ¦ β
β+ (π§
β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β (βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) =
(β«1βπ)))) |
613 | 612 | rexbidv 3178 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π =
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) β (βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) =
(β«1βπ)))) |
614 | | breq2 5151 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π =
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) β (π < π β π < (β«1β(π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))))) |
615 | 613, 614 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π =
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) β
((βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π) β (βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) =
(β«1βπ)) β§ π < (β«1β(π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)))))) |
616 | 610, 615 | spcev 3596 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((βπ β
dom β«1(βπ¦ β β+ (π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§
(β«1β(π§
β β β¦ if((0 β€ ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0))) =
(β«1βπ)) β§ π < (β«1β(π§ β β β¦ if((0
β€ ((πβπ§) β
(((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))) β§ π§ β (β‘π β (ran π β {0}))), ((πβπ§) β (((β«1βπ) β π) / (2 Β· (vol*β(β‘π β (ran π β {0})))))), 0)))) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π)) |
617 | 435, 609,
616 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β§ (vol*β(β‘π β (ran π β {0}))) β 0) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π)) |
618 | 192, 617 | pm2.61dane 3029 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ (π < (β«1βπ) β§ π β β)) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π)) |
619 | 618 | expr 457 |
. . . . . . . . . . . . . . . . . . 19
β’ (((πΉ:ββΆ(0[,]+β)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ π < (β«1βπ)) β (π β β β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π))) |
620 | 619 | adantllr 717 |
. . . . . . . . . . . . . . . . . 18
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β§ (π β dom β«1 β§ (π βr β€ πΉ β§ π = (β«1βπ)))) β§ π < (β«1βπ)) β (π β β β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π))) |
621 | 620 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β β*)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ π < (β«1βπ)) β§ π β -β) β (π β β β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π))) |
622 | 157, 621 | mpd 15 |
. . . . . . . . . . . . . . . 16
β’
(((((πΉ:ββΆ(0[,]+β) β§ π β β*)
β§ (π β dom
β«1 β§ (π
βr β€ πΉ
β§ π =
(β«1βπ)))) β§ π < (β«1βπ)) β§ π β -β) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π)) |
623 | 139, 622 | pm2.61dane 3029 |
. . . . . . . . . . . . . . 15
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β§ (π β dom β«1 β§ (π βr β€ πΉ β§ π = (β«1βπ)))) β§ π < (β«1βπ)) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π)) |
624 | 623 | ex 413 |
. . . . . . . . . . . . . 14
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β§ (π β dom β«1 β§ (π βr β€ πΉ β§ π = (β«1βπ)))) β (π < (β«1βπ) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π))) |
625 | 94, 624 | sylbid 239 |
. . . . . . . . . . . . 13
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β§ (π β dom β«1 β§ (π βr β€ πΉ β§ π = (β«1βπ)))) β (π < π β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π))) |
626 | 625 | imp 407 |
. . . . . . . . . . . 12
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β§ (π β dom β«1 β§ (π βr β€ πΉ β§ π = (β«1βπ)))) β§ π < π ) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π)) |
627 | 626 | an32s 650 |
. . . . . . . . . . 11
β’ ((((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β§ π < π ) β§ (π β dom β«1 β§ (π βr β€ πΉ β§ π = (β«1βπ)))) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π)) |
628 | 627 | rexlimdvaa 3156 |
. . . . . . . . . 10
β’ (((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β§ π < π ) β (βπ β dom β«1(π βr β€ πΉ β§ π = (β«1βπ)) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π))) |
629 | 628 | expimpd 454 |
. . . . . . . . 9
β’ ((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β ((π < π β§ βπ β dom β«1(π βr β€ πΉ β§ π = (β«1βπ))) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π))) |
630 | 629 | ancomsd 466 |
. . . . . . . 8
β’ ((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β ((βπ β dom β«1(π βr β€ πΉ β§ π = (β«1βπ)) β§ π < π ) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π))) |
631 | 630 | exlimdv 1936 |
. . . . . . 7
β’ ((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β (βπ (βπ β dom β«1(π βr β€ πΉ β§ π = (β«1βπ)) β§ π < π ) β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π))) |
632 | | eqeq1 2736 |
. . . . . . . . . 10
β’ (π₯ = π β (π₯ = (β«1βπ) β π = (β«1βπ))) |
633 | 632 | anbi2d 629 |
. . . . . . . . 9
β’ (π₯ = π β ((π βr β€ πΉ β§ π₯ = (β«1βπ)) β (π βr β€ πΉ β§ π = (β«1βπ)))) |
634 | 633 | rexbidv 3178 |
. . . . . . . 8
β’ (π₯ = π β (βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ)) β βπ β dom
β«1(π
βr β€ πΉ
β§ π =
(β«1βπ)))) |
635 | 634 | rexab 3689 |
. . . . . . 7
β’
(βπ β
{π₯ β£ βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))}π < π β βπ (βπ β dom β«1(π βr β€ πΉ β§ π = (β«1βπ)) β§ π < π )) |
636 | | eqeq1 2736 |
. . . . . . . . . 10
β’ (π₯ = π β (π₯ = (β«1βπ) β π = (β«1βπ))) |
637 | 636 | anbi2d 629 |
. . . . . . . . 9
β’ (π₯ = π β ((βπ¦ β β+ (π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ)) β (βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)))) |
638 | 637 | rexbidv 3178 |
. . . . . . . 8
β’ (π₯ = π β (βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ)) β βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)))) |
639 | 638 | rexab 3689 |
. . . . . . 7
β’
(βπ β
{π₯ β£ βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ))}π < π β βπ(βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π = (β«1βπ)) β§ π < π)) |
640 | 631, 635,
639 | 3imtr4g 295 |
. . . . . 6
β’ ((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β (βπ β {π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))}π < π β βπ β {π₯ β£ βπ β dom β«1(βπ¦ β β+
(π§ β β β¦
if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ))}π < π)) |
641 | 92, 640 | sylbid 239 |
. . . . 5
β’ ((πΉ:ββΆ(0[,]+β)
β§ π β
β*) β (π < sup({π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))}, β*, < )
β βπ β
{π₯ β£ βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ))}π < π)) |
642 | 641 | impr 455 |
. . . 4
β’ ((πΉ:ββΆ(0[,]+β)
β§ (π β
β* β§ π
< sup({π₯ β£
βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))}, β*, < ))) β
βπ β {π₯ β£ βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ))}π < π) |
643 | 6, 15, 89, 642 | eqsupd 9448 |
. . 3
β’ (πΉ:ββΆ(0[,]+β)
β sup({π₯ β£
βπ β dom
β«1(βπ¦
β β+ (π§ β β β¦ if((πβπ§) = 0, 0, ((πβπ§) + π¦))) βr β€ πΉ β§ π₯ = (β«1βπ))}, β*, < )
= sup({π₯ β£
βπ β dom
β«1(π
βr β€ πΉ
β§ π₯ =
(β«1βπ))}, β*, <
)) |
644 | 4, 643 | eqtrid 2784 |
. 2
β’ (πΉ:ββΆ(0[,]+β)
β sup(πΏ,
β*, < ) = sup({π₯ β£ βπ β dom β«1(π βr β€ πΉ β§ π₯ = (β«1βπ))}, β*, <
)) |
645 | 2, 644 | eqtr4d 2775 |
1
β’ (πΉ:ββΆ(0[,]+β)
β (β«2βπΉ) = sup(πΏ, β*, <
)) |