| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . 3
⊢ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} = {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} |
| 2 | 1 | itg2val 25764 |
. 2
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
| 3 | | itg2addnclem.1 |
. . . 4
⊢ 𝐿 = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} |
| 4 | 3 | supeq1i 9488 |
. . 3
⊢ sup(𝐿, ℝ*, < ) =
sup({𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, <
) |
| 5 | | xrltso 13184 |
. . . . 5
⊢ < Or
ℝ* |
| 6 | 5 | a1i 11 |
. . . 4
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ < Or ℝ*) |
| 7 | | simprr 772 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))) → 𝑥 = (∫1‘𝑓)) |
| 8 | | itg1cl 25721 |
. . . . . . . . . 10
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘𝑓) ∈ ℝ) |
| 9 | 8 | rexrd 11312 |
. . . . . . . . 9
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘𝑓) ∈
ℝ*) |
| 10 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))) → (∫1‘𝑓) ∈
ℝ*) |
| 11 | 7, 10 | eqeltrd 2840 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))) → 𝑥 ∈ ℝ*) |
| 12 | 11 | rexlimiva 3146 |
. . . . . 6
⊢
(∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓)) → 𝑥 ∈ ℝ*) |
| 13 | 12 | abssi 4069 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} ⊆
ℝ* |
| 14 | | supxrcl 13358 |
. . . . 5
⊢ ({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} ⊆ ℝ* →
sup({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ) ∈
ℝ*) |
| 15 | 13, 14 | mp1i 13 |
. . . 4
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ) ∈
ℝ*) |
| 16 | | fveq1 6904 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑓 → (𝑔‘𝑧) = (𝑓‘𝑧)) |
| 17 | 16 | eqeq1d 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑓 → ((𝑔‘𝑧) = 0 ↔ (𝑓‘𝑧) = 0)) |
| 18 | 16 | oveq1d 7447 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑓 → ((𝑔‘𝑧) + 𝑦) = ((𝑓‘𝑧) + 𝑦)) |
| 19 | 17, 18 | ifbieq2d 4551 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑓 → if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦)) = if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) |
| 20 | 19 | mpteq2dv 5243 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑓 → (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)))) |
| 21 | 20 | breq1d 5152 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → ((𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹)) |
| 22 | 21 | rexbidv 3178 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹)) |
| 23 | | fveq2 6905 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → (∫1‘𝑔) =
(∫1‘𝑓)) |
| 24 | 23 | eqeq2d 2747 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → (𝑥 = (∫1‘𝑔) ↔ 𝑥 = (∫1‘𝑓))) |
| 25 | 22, 24 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑓 → ((∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)))) |
| 26 | 25 | cbvrexvw 3237 |
. . . . . . . . 9
⊢
(∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑓 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))) |
| 27 | | breq2 5146 |
. . . . . . . . . . . . . . . . 17
⊢ (0 =
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) → ((𝑓‘𝑧) ≤ 0 ↔ (𝑓‘𝑧) ≤ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)))) |
| 28 | | breq2 5146 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓‘𝑧) + 𝑦) = if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) → ((𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑦) ↔ (𝑓‘𝑧) ≤ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)))) |
| 29 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑧) = 0 → (𝑓‘𝑧) = 0) |
| 30 | | 0le0 12368 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ≤
0 |
| 31 | 29, 30 | eqbrtrdi 5181 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓‘𝑧) = 0 → (𝑓‘𝑧) ≤ 0) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) = 0) → (𝑓‘𝑧) ≤ 0) |
| 33 | | rpge0 13049 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℝ+
→ 0 ≤ 𝑦) |
| 34 | 33 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) → 0 ≤ 𝑦) |
| 35 | | i1ff 25712 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
| 36 | 35 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑧 ∈ ℝ)
→ (𝑓‘𝑧) ∈
ℝ) |
| 37 | 36 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℝ) |
| 38 | | rpre 13044 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
| 39 | 38 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℝ) |
| 40 | 37, 39 | addge01d 11852 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) → (0 ≤ 𝑦 ↔ (𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑦))) |
| 41 | 34, 40 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑦)) |
| 42 | 41 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) ∧ ¬ (𝑓‘𝑧) = 0) → (𝑓‘𝑧) ≤ ((𝑓‘𝑧) + 𝑦)) |
| 43 | 27, 28, 32, 42 | ifbothda 4563 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑦 ∈
ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ≤ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) |
| 44 | 43 | adantlll 718 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ≤ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) |
| 45 | 35 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → 𝑓:ℝ⟶ℝ) |
| 46 | 45 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℝ) |
| 47 | 46 | rexrd 11312 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈
ℝ*) |
| 48 | | 0re 11264 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ |
| 49 | 38 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℝ) |
| 50 | 46, 49 | readdcld 11291 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) + 𝑦) ∈ ℝ) |
| 51 | | ifcl 4570 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℝ ∧ ((𝑓‘𝑧) + 𝑦) ∈ ℝ) → if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ∈ ℝ) |
| 52 | 48, 50, 51 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ∈ ℝ) |
| 53 | 52 | rexrd 11312 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ∈
ℝ*) |
| 54 | | iccssxr 13471 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0[,]+∞) ⊆ ℝ* |
| 55 | | fss 6751 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (0[,]+∞) ⊆ ℝ*) → 𝐹:ℝ⟶ℝ*) |
| 56 | 54, 55 | mpan2 691 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ 𝐹:ℝ⟶ℝ*) |
| 57 | 56 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → 𝐹:ℝ⟶ℝ*) |
| 58 | 57 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ∈
ℝ*) |
| 59 | | xrletr 13201 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓‘𝑧) ∈ ℝ* ∧ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ∈ ℝ* ∧ (𝐹‘𝑧) ∈ ℝ*) → (((𝑓‘𝑧) ≤ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ∧ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ≤ (𝐹‘𝑧)) → (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
| 60 | 47, 53, 58, 59 | syl3anc 1372 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) ≤ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ∧ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ≤ (𝐹‘𝑧)) → (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
| 61 | 44, 60 | mpand 695 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) ∧ 𝑧 ∈ ℝ) → (if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ≤ (𝐹‘𝑧) → (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
| 62 | 61 | ralimdva 3166 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → (∀𝑧 ∈ ℝ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ≤ (𝐹‘𝑧) → ∀𝑧 ∈ ℝ (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
| 63 | | reex 11247 |
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ V |
| 64 | 63 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → ℝ ∈ V) |
| 65 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)))) |
| 66 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ 𝐹:ℝ⟶(0[,]+∞)) |
| 67 | 66 | feqmptd 6976 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ 𝐹 = (𝑧 ∈ ℝ ↦ (𝐹‘𝑧))) |
| 68 | 67 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → 𝐹 = (𝑧 ∈ ℝ ↦ (𝐹‘𝑧))) |
| 69 | 64, 52, 58, 65, 68 | ofrfval2 7719 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → ((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦)) ≤ (𝐹‘𝑧))) |
| 70 | 35 | feqmptd 6976 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 = (𝑧 ∈ ℝ ↦ (𝑓‘𝑧))) |
| 71 | 70 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → 𝑓 = (𝑧 ∈ ℝ ↦ (𝑓‘𝑧))) |
| 72 | 64, 46, 58, 71, 68 | ofrfval2 7719 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → (𝑓 ∘r ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
| 73 | 62, 69, 72 | 3imtr4d 294 |
. . . . . . . . . . . 12
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑦
∈ ℝ+) → ((𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 → 𝑓 ∘r ≤ 𝐹)) |
| 74 | 73 | rexlimdva 3154 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) → (∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 → 𝑓 ∘r ≤ 𝐹)) |
| 75 | 74 | anim1d 611 |
. . . . . . . . . 10
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) → ((∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) → (𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)))) |
| 76 | 75 | reximdva 3167 |
. . . . . . . . 9
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∃𝑓 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑓‘𝑧) = 0, 0, ((𝑓‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) → ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓)))) |
| 77 | 26, 76 | biimtrid 242 |
. . . . . . . 8
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) → ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓)))) |
| 78 | 77 | ss2abdv 4065 |
. . . . . . 7
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ {𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}) |
| 79 | 78 | sseld 3981 |
. . . . . 6
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} → 𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))})) |
| 80 | | simp3r 1202 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))) → 𝑥 = (∫1‘𝑓)) |
| 81 | 9 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))) → (∫1‘𝑓) ∈
ℝ*) |
| 82 | 80, 81 | eqeltrd 2840 |
. . . . . . . . . 10
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))) → 𝑥 ∈ ℝ*) |
| 83 | 82 | rexlimdv3a 3158 |
. . . . . . . . 9
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓)) → 𝑥 ∈
ℝ*)) |
| 84 | 83 | abssdv 4067 |
. . . . . . . 8
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ {𝑥 ∣
∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} ⊆
ℝ*) |
| 85 | | xrsupss 13352 |
. . . . . . . 8
⊢ ({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} ⊆ ℝ* →
∃𝑎 ∈
ℝ* (∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑠 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 < 𝑠))) |
| 86 | 84, 85 | syl 17 |
. . . . . . 7
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∃𝑎 ∈
ℝ* (∀𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))} ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ ℝ* (𝑏 < 𝑎 → ∃𝑠 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 < 𝑠))) |
| 87 | 6, 86 | supub 9500 |
. . . . . 6
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (𝑏 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} → ¬ sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
< 𝑏)) |
| 88 | 79, 87 | syld 47 |
. . . . 5
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} → ¬ sup({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ) < 𝑏)) |
| 89 | 88 | imp 406 |
. . . 4
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}) → ¬ sup({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ) < 𝑏) |
| 90 | | supxrlub 13368 |
. . . . . . . 8
⊢ (({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))} ⊆ ℝ* ∧ 𝑏 ∈ ℝ*)
→ (𝑏 < sup({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ) ↔
∃𝑠 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}𝑏 < 𝑠)) |
| 91 | 13, 90 | mpan 690 |
. . . . . . 7
⊢ (𝑏 ∈ ℝ*
→ (𝑏 < sup({𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ) ↔
∃𝑠 ∈ {𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}𝑏 < 𝑠)) |
| 92 | 91 | adantl 481 |
. . . . . 6
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → (𝑏 < sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
↔ ∃𝑠 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}𝑏 < 𝑠)) |
| 93 | | simprrr 781 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) → 𝑠 = (∫1‘𝑓)) |
| 94 | 93 | breq2d 5154 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) → (𝑏 < 𝑠 ↔ 𝑏 < (∫1‘𝑓))) |
| 95 | | simplll 774 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) → 𝐹:ℝ⟶(0[,]+∞)) |
| 96 | | i1f0 25723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℝ
× {0}) ∈ dom ∫1 |
| 97 | | 2rp 13040 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℝ+ |
| 98 | 97 | ne0ii 4343 |
. . . . . . . . . . . . . . . . . . . 20
⊢
ℝ+ ≠ ∅ |
| 99 | | ffvelcdm 7100 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑧 ∈ ℝ)
→ (𝐹‘𝑧) ∈
(0[,]+∞)) |
| 100 | | elxrge0 13498 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹‘𝑧) ∈ (0[,]+∞) ↔ ((𝐹‘𝑧) ∈ ℝ* ∧ 0 ≤
(𝐹‘𝑧))) |
| 101 | 99, 100 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑧 ∈ ℝ)
→ ((𝐹‘𝑧) ∈ ℝ*
∧ 0 ≤ (𝐹‘𝑧))) |
| 102 | 101 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑧 ∈ ℝ)
→ 0 ≤ (𝐹‘𝑧)) |
| 103 | 102 | ralrimiva 3145 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∀𝑧 ∈
ℝ 0 ≤ (𝐹‘𝑧)) |
| 104 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ℝ ∈ V) |
| 105 | | c0ex 11256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ∈
V |
| 106 | 105 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑧 ∈ ℝ)
→ 0 ∈ V) |
| 107 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (𝑧 ∈ ℝ
↦ 0) = (𝑧 ∈
ℝ ↦ 0)) |
| 108 | 104, 106,
99, 107, 67 | ofrfval2 7719 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ((𝑧 ∈ ℝ
↦ 0) ∘r ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ 0 ≤ (𝐹‘𝑧))) |
| 109 | 103, 108 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (𝑧 ∈ ℝ
↦ 0) ∘r ≤ 𝐹) |
| 110 | 109 | ralrimivw 3149 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∀𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ 0) ∘r ≤ 𝐹) |
| 111 | | r19.2z 4494 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((ℝ+ ≠ ∅ ∧ ∀𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐹)
→ ∃𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ 0) ∘r ≤ 𝐹) |
| 112 | 98, 110, 111 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∃𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ 0) ∘r ≤ 𝐹) |
| 113 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔 = (ℝ × {0}) →
(∫1‘𝑔)
= (∫1‘(ℝ × {0}))) |
| 114 | | itg10 25724 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∫1‘(ℝ × {0})) = 0 |
| 115 | 113, 114 | eqtr2di 2793 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = (ℝ × {0}) →
0 = (∫1‘𝑔)) |
| 116 | 115 | biantrud 531 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (ℝ × {0}) →
(∃𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔)))) |
| 117 | | fveq1 6904 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑔 = (ℝ × {0}) →
(𝑔‘𝑧) = ((ℝ × {0})‘𝑧)) |
| 118 | 105 | fvconst2 7225 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ ℝ → ((ℝ
× {0})‘𝑧) =
0) |
| 119 | 117, 118 | sylan9eq 2796 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔 = (ℝ × {0}) ∧
𝑧 ∈ ℝ) →
(𝑔‘𝑧) = 0) |
| 120 | | iftrue 4530 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔‘𝑧) = 0 → if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦)) = 0) |
| 121 | 119, 120 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑔 = (ℝ × {0}) ∧
𝑧 ∈ ℝ) →
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦)) = 0) |
| 122 | 121 | mpteq2dva 5241 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔 = (ℝ × {0}) →
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ 0)) |
| 123 | 122 | breq1d 5152 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = (ℝ × {0}) →
((𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐹)) |
| 124 | 123 | rexbidv 3178 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = (ℝ × {0}) →
(∃𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
0) ∘r ≤ 𝐹)) |
| 125 | 116, 124 | bitr3d 281 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = (ℝ × {0}) →
((∃𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔)) ↔ ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ 0)
∘r ≤ 𝐹)) |
| 126 | 125 | rspcev 3621 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ℝ × {0}) ∈ dom ∫1 ∧ ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
0) ∘r ≤ 𝐹) → ∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔))) |
| 127 | 96, 112, 126 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔))) |
| 128 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = -∞ → 𝑏 = -∞) |
| 129 | | mnflt 13166 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℝ → -∞ < 0) |
| 130 | 48, 129 | mp1i 13 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = -∞ → -∞ <
0) |
| 131 | 128, 130 | eqbrtrd 5164 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = -∞ → 𝑏 < 0) |
| 132 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 0 → (𝑎 = (∫1‘𝑔) ↔ 0 =
(∫1‘𝑔))) |
| 133 | 132 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 0 → ((∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔)))) |
| 134 | 133 | rexbidv 3178 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 0 → (∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔)))) |
| 135 | | breq2 5146 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 0 → (𝑏 < 𝑎 ↔ 𝑏 < 0)) |
| 136 | 134, 135 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 0 → ((∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎) ↔ (∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔)) ∧ 𝑏 < 0))) |
| 137 | 105, 136 | spcev 3605 |
. . . . . . . . . . . . . . . . . 18
⊢
((∃𝑔 ∈
dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔)) ∧ 𝑏 < 0) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
| 138 | 127, 131,
137 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 = -∞) →
∃𝑎(∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
| 139 | 95, 138 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 = -∞) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
| 140 | | simp-4r 783 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) → 𝑏 ∈ ℝ*) |
| 141 | 8 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → (∫1‘𝑓) ∈
ℝ) |
| 142 | 141 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) →
(∫1‘𝑓)
∈ ℝ) |
| 143 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) → 𝑏 ∈ ℝ*) |
| 144 | | ngtmnft 13209 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 ∈ ℝ*
→ (𝑏 = -∞ ↔
¬ -∞ < 𝑏)) |
| 145 | 144 | biimprd 248 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 ∈ ℝ*
→ (¬ -∞ < 𝑏 → 𝑏 = -∞)) |
| 146 | 145 | necon1ad 2956 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ ℝ*
→ (𝑏 ≠ -∞
→ -∞ < 𝑏)) |
| 147 | 146 | imp 406 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑏 ∈ ℝ*
∧ 𝑏 ≠ -∞)
→ -∞ < 𝑏) |
| 148 | 143, 147 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) → -∞ < 𝑏) |
| 149 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → 𝑏 ∈ ℝ*) |
| 150 | 9 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → (∫1‘𝑓) ∈
ℝ*) |
| 151 | 149, 150 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) → (𝑏 ∈ ℝ* ∧
(∫1‘𝑓)
∈ ℝ*)) |
| 152 | | xrltle 13192 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏 ∈ ℝ*
∧ (∫1‘𝑓) ∈ ℝ*) → (𝑏 <
(∫1‘𝑓)
→ 𝑏 ≤
(∫1‘𝑓))) |
| 153 | 152 | imp 406 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑏 ∈ ℝ*
∧ (∫1‘𝑓) ∈ ℝ*) ∧ 𝑏 <
(∫1‘𝑓)) → 𝑏 ≤ (∫1‘𝑓)) |
| 154 | 151, 153 | sylan 580 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) → 𝑏 ≤ (∫1‘𝑓)) |
| 155 | 154 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) → 𝑏 ≤ (∫1‘𝑓)) |
| 156 | | xrre 13212 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ ℝ*
∧ (∫1‘𝑓) ∈ ℝ) ∧ (-∞ < 𝑏 ∧ 𝑏 ≤ (∫1‘𝑓))) → 𝑏 ∈ ℝ) |
| 157 | 140, 142,
148, 155, 156 | syl22anc 838 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) → 𝑏 ∈ ℝ) |
| 158 | 127 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) → ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 0 =
(∫1‘𝑔))) |
| 159 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) → 𝑏 <
(∫1‘𝑓)) |
| 160 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → 𝑓 ∈ dom
∫1) |
| 161 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ dom ∫1
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) → 𝑓 ∈ dom
∫1) |
| 162 | | cnvimass 6099 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (◡𝑓 “ (ran 𝑓 ∖ {0})) ⊆ dom 𝑓 |
| 163 | 162, 35 | fssdm 6754 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 ∈ dom ∫1
→ (◡𝑓 “ (ran 𝑓 ∖ {0})) ⊆
ℝ) |
| 164 | 163 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ dom ∫1
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) → (◡𝑓 “ (ran 𝑓 ∖ {0})) ⊆
ℝ) |
| 165 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ dom ∫1
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) →
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) |
| 166 | | fdm 6744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑓:ℝ⟶ℝ →
dom 𝑓 =
ℝ) |
| 167 | 166 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓:ℝ⟶ℝ →
ℝ = dom 𝑓) |
| 168 | | ffun 6738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑓:ℝ⟶ℝ →
Fun 𝑓) |
| 169 | | difpreima 7084 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (Fun
𝑓 → (◡𝑓 “ (ran 𝑓 ∖ {0})) = ((◡𝑓 “ ran 𝑓) ∖ (◡𝑓 “ {0}))) |
| 170 | 168, 169 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑓:ℝ⟶ℝ →
(◡𝑓 “ (ran 𝑓 ∖ {0})) = ((◡𝑓 “ ran 𝑓) ∖ (◡𝑓 “ {0}))) |
| 171 | | cnvimarndm 6100 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (◡𝑓 “ ran 𝑓) = dom 𝑓 |
| 172 | 171 | difeq1i 4121 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((◡𝑓 “ ran 𝑓) ∖ (◡𝑓 “ {0})) = (dom 𝑓 ∖ (◡𝑓 “ {0})) |
| 173 | 170, 172 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓:ℝ⟶ℝ →
(◡𝑓 “ (ran 𝑓 ∖ {0})) = (dom 𝑓 ∖ (◡𝑓 “ {0}))) |
| 174 | 167, 173 | difeq12d 4126 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓:ℝ⟶ℝ →
(ℝ ∖ (◡𝑓 “ (ran 𝑓 ∖ {0}))) = (dom 𝑓 ∖ (dom 𝑓 ∖ (◡𝑓 “ {0})))) |
| 175 | | cnvimass 6099 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (◡𝑓 “ {0}) ⊆ dom 𝑓 |
| 176 | | dfss4 4268 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((◡𝑓 “ {0}) ⊆ dom 𝑓 ↔ (dom 𝑓 ∖ (dom 𝑓 ∖ (◡𝑓 “ {0}))) = (◡𝑓 “ {0})) |
| 177 | 175, 176 | mpbi 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (dom
𝑓 ∖ (dom 𝑓 ∖ (◡𝑓 “ {0}))) = (◡𝑓 “ {0}) |
| 178 | 174, 177 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓:ℝ⟶ℝ →
(ℝ ∖ (◡𝑓 “ (ran 𝑓 ∖ {0}))) = (◡𝑓 “ {0})) |
| 179 | 178 | eleq2d 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (ℝ ∖
(◡𝑓 “ (ran 𝑓 ∖ {0}))) ↔ 𝑧 ∈ (◡𝑓 “ {0}))) |
| 180 | | ffn 6735 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓:ℝ⟶ℝ →
𝑓 Fn
ℝ) |
| 181 | | fniniseg 7079 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 Fn ℝ → (𝑧 ∈ (◡𝑓 “ {0}) ↔ (𝑧 ∈ ℝ ∧ (𝑓‘𝑧) = 0))) |
| 182 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑧 ∈ ℝ ∧ (𝑓‘𝑧) = 0) → (𝑓‘𝑧) = 0) |
| 183 | 181, 182 | biimtrdi 253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓 Fn ℝ → (𝑧 ∈ (◡𝑓 “ {0}) → (𝑓‘𝑧) = 0)) |
| 184 | 180, 183 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (◡𝑓 “ {0}) → (𝑓‘𝑧) = 0)) |
| 185 | 179, 184 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (ℝ ∖
(◡𝑓 “ (ran 𝑓 ∖ {0}))) → (𝑓‘𝑧) = 0)) |
| 186 | 35, 185 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓 ∈ dom ∫1
→ (𝑧 ∈ (ℝ
∖ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → (𝑓‘𝑧) = 0)) |
| 187 | 186 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑧 ∈ (ℝ
∖ (◡𝑓 “ (ran 𝑓 ∖ {0})))) → (𝑓‘𝑧) = 0) |
| 188 | 187 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) ∧ 𝑧 ∈ (ℝ ∖ (◡𝑓 “ (ran 𝑓 ∖ {0})))) → (𝑓‘𝑧) = 0) |
| 189 | 161, 164,
165, 188 | itg10a 25746 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 ∈ dom ∫1
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) →
(∫1‘𝑓)
= 0) |
| 190 | 160, 189 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) →
(∫1‘𝑓)
= 0) |
| 191 | 159, 190 | breqtrd 5168 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) → 𝑏 < 0) |
| 192 | 158, 191,
137 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = 0) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
| 193 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) → 𝑓 ∈ dom
∫1) |
| 194 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ)
→ 𝑏 ∈
ℝ) |
| 195 | 193, 194 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → (𝑓 ∈ dom ∫1 ∧ 𝑏 ∈
ℝ)) |
| 196 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ℝ ∈
V) |
| 197 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓‘𝑢) ∈ V |
| 198 | 197 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (𝑓‘𝑢) ∈ V) |
| 199 | | ovex 7465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈ V |
| 200 | 199, 105 | ifex 4575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0) ∈
V |
| 201 | 200 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0) ∈
V) |
| 202 | 35 | feqmptd 6976 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 = (𝑢 ∈ ℝ ↦ (𝑓‘𝑢))) |
| 203 | 202 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑓 = (𝑢 ∈ ℝ ↦ (𝑓‘𝑢))) |
| 204 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) |
| 205 | 196, 198,
201, 203, 204 | offval2 7718 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑢 ∈ ℝ ↦
if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) = (𝑢 ∈ ℝ ↦ ((𝑓‘𝑢) − if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) |
| 206 | | ovif2 7533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓‘𝑢) − if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) = if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑢) − 0)) |
| 207 | 171, 166 | eqtrid 2788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑓:ℝ⟶ℝ →
(◡𝑓 “ ran 𝑓) = ℝ) |
| 208 | 207 | difeq1d 4124 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑓:ℝ⟶ℝ →
((◡𝑓 “ ran 𝑓) ∖ (◡𝑓 “ {0})) = (ℝ ∖ (◡𝑓 “ {0}))) |
| 209 | 170, 208 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑓:ℝ⟶ℝ →
(◡𝑓 “ (ran 𝑓 ∖ {0})) = (ℝ ∖ (◡𝑓 “ {0}))) |
| 210 | 209 | eleq2d 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑓:ℝ⟶ℝ →
(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ 𝑢 ∈ (ℝ ∖ (◡𝑓 “ {0})))) |
| 211 | 35, 210 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑓 ∈ dom ∫1
→ (𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ 𝑢 ∈ (ℝ ∖ (◡𝑓 “ {0})))) |
| 212 | 211 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ 𝑢 ∈ (ℝ ∖ (◡𝑓 “ {0})))) |
| 213 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → 𝑢 ∈
ℝ) |
| 214 | 213 | biantrurd 532 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (¬
𝑢 ∈ (◡𝑓 “ {0}) ↔ (𝑢 ∈ ℝ ∧ ¬ 𝑢 ∈ (◡𝑓 “ {0})))) |
| 215 | | eldif 3960 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑢 ∈ (ℝ ∖ (◡𝑓 “ {0})) ↔ (𝑢 ∈ ℝ ∧ ¬ 𝑢 ∈ (◡𝑓 “ {0}))) |
| 216 | 214, 215 | bitr4di 289 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (¬
𝑢 ∈ (◡𝑓 “ {0}) ↔ 𝑢 ∈ (ℝ ∖ (◡𝑓 “ {0})))) |
| 217 | 212, 216 | bitr4d 282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ ¬ 𝑢 ∈ (◡𝑓 “ {0}))) |
| 218 | 217 | con2bid 354 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (𝑢 ∈ (◡𝑓 “ {0}) ↔ ¬ 𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})))) |
| 219 | | fniniseg 7079 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑓 Fn ℝ → (𝑢 ∈ (◡𝑓 “ {0}) ↔ (𝑢 ∈ ℝ ∧ (𝑓‘𝑢) = 0))) |
| 220 | 35, 180, 219 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑓 ∈ dom ∫1
→ (𝑢 ∈ (◡𝑓 “ {0}) ↔ (𝑢 ∈ ℝ ∧ (𝑓‘𝑢) = 0))) |
| 221 | 220 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (𝑢 ∈ (◡𝑓 “ {0}) ↔ (𝑢 ∈ ℝ ∧ (𝑓‘𝑢) = 0))) |
| 222 | 218, 221 | bitr3d 281 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (¬
𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ (𝑢 ∈ ℝ ∧ (𝑓‘𝑢) = 0))) |
| 223 | | oveq1 7439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑓‘𝑢) = 0 → ((𝑓‘𝑢) − 0) = (0 −
0)) |
| 224 | | 0m0e0 12387 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (0
− 0) = 0 |
| 225 | 223, 224 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑓‘𝑢) = 0 → ((𝑓‘𝑢) − 0) = 0) |
| 226 | 225 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑢 ∈ ℝ ∧ (𝑓‘𝑢) = 0) → ((𝑓‘𝑢) − 0) = 0) |
| 227 | 222, 226 | biimtrdi 253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → (¬
𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → ((𝑓‘𝑢) − 0) = 0)) |
| 228 | 227 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) ∧ ¬
𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑢) − 0) = 0) |
| 229 | 228 | ifeq2da 4557 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑢) − 0)) = if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 230 | 206, 229 | eqtrid 2788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → ((𝑓‘𝑢) − if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) = if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 231 | 230 | mpteq2dva 5241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦ ((𝑓‘𝑢) − if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
| 232 | 205, 231 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑢 ∈ ℝ ↦
if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
| 233 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑓 ∈ dom
∫1) |
| 234 | 199 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈ V) |
| 235 | | 1ex 11258 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 1 ∈
V |
| 236 | 235, 105 | ifex 4575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0) ∈
V |
| 237 | 236 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑢 ∈ ℝ) → if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0) ∈
V) |
| 238 | | fconstmpt 5746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) = (𝑢 ∈ ℝ ↦
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) |
| 239 | 238 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) = (𝑢 ∈ ℝ ↦
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 240 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) |
| 241 | 196, 234,
237, 239, 240 | offval2 7718 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑢 ∈ ℝ
↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (𝑢 ∈ ℝ ↦
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) |
| 242 | | ovif2 7533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 1),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ·
0)) |
| 243 | | resubcl 11574 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((∫1‘𝑓) ∈ ℝ ∧ 𝑏 ∈ ℝ) →
((∫1‘𝑓) − 𝑏) ∈ ℝ) |
| 244 | 8, 243 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((∫1‘𝑓) − 𝑏) ∈ ℝ) |
| 245 | 244 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((∫1‘𝑓) − 𝑏) ∈ ℝ) |
| 246 | | 2re 12341 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ 2 ∈
ℝ |
| 247 | | i1fima 25714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑓 ∈ dom ∫1
→ (◡𝑓 “ (ran 𝑓 ∖ {0})) ∈ dom
vol) |
| 248 | | mblvol 25566 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((◡𝑓 “ (ran 𝑓 ∖ {0})) ∈ dom vol →
(vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
| 249 | 247, 248 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑓 ∈ dom ∫1
→ (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
| 250 | | neldifsn 4791 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ¬ 0
∈ (ran 𝑓 ∖
{0}) |
| 251 | | i1fima2 25715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑓 ∈ dom ∫1
∧ ¬ 0 ∈ (ran 𝑓
∖ {0})) → (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℝ) |
| 252 | 250, 251 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑓 ∈ dom ∫1
→ (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℝ) |
| 253 | 249, 252 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑓 ∈ dom ∫1
→ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℝ) |
| 254 | | remulcl 11241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((2
∈ ℝ ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ) → (2
· (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℝ) |
| 255 | 246, 253,
254 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑓 ∈ dom ∫1
→ (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℝ) |
| 256 | 255 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℝ) |
| 257 | | 2cnd 12345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 2 ∈
ℂ) |
| 258 | 253 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℝ) |
| 259 | 258 | recnd 11290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℂ) |
| 260 | | 2ne0 12371 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ 2 ≠
0 |
| 261 | 260 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 2 ≠
0) |
| 262 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) |
| 263 | 257, 259,
261, 262 | mulne0d 11916 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ≠ 0) |
| 264 | 245, 256,
263 | redivcld 12096 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℝ) |
| 265 | 264 | recnd 11290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℂ) |
| 266 | 265 | mulridd 11279 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 1) =
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) |
| 267 | 265 | mul01d 11461 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 0) =
0) |
| 268 | 266, 267 | ifeq12d 4546 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 1),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 0)) = if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) |
| 269 | 242, 268 | eqtrid 2788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) |
| 270 | 269 | mpteq2dv 5243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) |
| 271 | 241, 270 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑢 ∈ ℝ
↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) |
| 272 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) |
| 273 | 272 | i1f1 25726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((◡𝑓 “ (ran 𝑓 ∖ {0})) ∈ dom vol ∧
(vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ) → (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) ∈ dom
∫1) |
| 274 | 247, 252,
273 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓 ∈ dom ∫1
→ (𝑢 ∈ ℝ
↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) ∈ dom
∫1) |
| 275 | 274 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) ∈ dom
∫1) |
| 276 | 275, 264 | i1fmulc 25739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑢 ∈ ℝ
↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) ∈ dom
∫1) |
| 277 | 271, 276 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈ dom
∫1) |
| 278 | | i1fsub 25744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑢 ∈ ℝ
↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈ dom
∫1) → (𝑓 ∘f − (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1) |
| 279 | 233, 277,
278 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑢 ∈ ℝ ↦
if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1) |
| 280 | 232, 279 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1) |
| 281 | | iftrue 4530 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 282 | | iftrue 4530 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 283 | 282 | breq2d 5154 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → (0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ 0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) |
| 284 | 283, 282 | ifbieq1d 4549 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) = if(0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 285 | | iftrue 4530 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 286 | 284, 285 | sylan9eqr 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) = ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 287 | 281, 286 | eqtr4d 2779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0)) |
| 288 | | iffalse 4533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) |
| 289 | | ianor 983 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) ↔ (¬ 0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∨ ¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})))) |
| 290 | 283 | ifbid 4548 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) = if(0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0)) |
| 291 | | iffalse 4533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
| 292 | 290, 291 | sylan9eqr 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
| 293 | 292 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0)) |
| 294 | | iffalse 4533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) |
| 295 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ 0 =
0 |
| 296 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) → (if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0 ↔ if(0 ≤
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0)) |
| 297 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (0 = if(0
≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) → (0 = 0
↔ if(0 ≤ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0)) |
| 298 | 296, 297 | ifboth 4564 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0 ∧ 0 = 0)
→ if(0 ≤ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
| 299 | 294, 295,
298 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
| 300 | 293, 299 | pm2.61d1 180 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
| 301 | 300, 299 | jaoi 857 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∨ ¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
| 302 | 289, 301 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) =
0) |
| 303 | 288, 302 | eqtr4d 2779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0)) |
| 304 | 287, 303 | pm2.61i 182 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0) |
| 305 | | eleq1w 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 = 𝑧 → (𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})))) |
| 306 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑢 = 𝑧 → (𝑓‘𝑢) = (𝑓‘𝑧)) |
| 307 | 306 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 = 𝑧 → ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 308 | 305, 307 | ifbieq1d 4549 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑢 = 𝑧 → if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 309 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 310 | | ovex 7465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∈ V |
| 311 | 310, 105 | ifex 4575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ∈
V |
| 312 | 308, 309,
311 | fvmpt 7015 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 ∈ ℝ → ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧) = if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 313 | 312 | breq2d 5154 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ ℝ → (0 ≤
((𝑢 ∈ ℝ ↦
if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧) ↔ 0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
| 314 | 313, 312 | ifbieq1d 4549 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ ℝ → if(0 ≤
((𝑢 ∈ ℝ ↦
if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧), ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧), 0) = if(0 ≤ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0), 0)) |
| 315 | 304, 314 | eqtr4id 2795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ ℝ → if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(0 ≤ ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧), ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧), 0)) |
| 316 | 315 | mpteq2ia 5244 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) = (𝑧 ∈ ℝ ↦ if(0 ≤ ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧), ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧), 0)) |
| 317 | 316 | i1fpos 25742 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑢 ∈ ℝ ↦ if(𝑢 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), ((𝑓‘𝑢) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1 → (𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1) |
| 318 | 280, 317 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1) |
| 319 | 195, 318 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1) |
| 320 | 195, 264 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℝ) |
| 321 | 8 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) → (∫1‘𝑓) ∈
ℝ) |
| 322 | 321, 194,
243 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) →
((∫1‘𝑓) − 𝑏) ∈ ℝ) |
| 323 | 322 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((∫1‘𝑓) − 𝑏) ∈ ℝ) |
| 324 | 255 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℝ) |
| 325 | 324 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℝ) |
| 326 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → 𝑏 < (∫1‘𝑓)) |
| 327 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → 𝑏 ∈ ℝ) |
| 328 | 141 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) →
(∫1‘𝑓)
∈ ℝ) |
| 329 | 327, 328 | posdifd 11851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → (𝑏 < (∫1‘𝑓) ↔ 0 <
((∫1‘𝑓) − 𝑏))) |
| 330 | 326, 329 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → 0 <
((∫1‘𝑓) − 𝑏)) |
| 331 | 330 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 0 <
((∫1‘𝑓) − 𝑏)) |
| 332 | 253 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℝ) |
| 333 | 332 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℝ) |
| 334 | | mblss 25567 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((◡𝑓 “ (ran 𝑓 ∖ {0})) ∈ dom vol → (◡𝑓 “ (ran 𝑓 ∖ {0})) ⊆
ℝ) |
| 335 | | ovolge0 25517 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((◡𝑓 “ (ran 𝑓 ∖ {0})) ⊆ ℝ → 0 ≤
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
| 336 | 247, 334,
335 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 ∈ dom ∫1
→ 0 ≤ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
| 337 | | ltlen 11363 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((0
∈ ℝ ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ) → (0
< (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ↔ (0 ≤
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0))) |
| 338 | 48, 253, 337 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 ∈ dom ∫1
→ (0 < (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ↔ (0 ≤
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0))) |
| 339 | 338 | biimprd 248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 ∈ dom ∫1
→ ((0 ≤ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
| 340 | 336, 339 | mpand 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓 ∈ dom ∫1
→ ((vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0 → 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
| 341 | 340 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) → ((vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0 → 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
| 342 | 341 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
| 343 | 342 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
| 344 | | 2pos 12370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 0 <
2 |
| 345 | | mulgt0 11339 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((2
∈ ℝ ∧ 0 < 2) ∧ ((vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ ∧ 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) → 0 < (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
| 346 | 246, 344,
345 | mpanl12 702 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ ∧ 0 <
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) → 0 < (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
| 347 | 333, 343,
346 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 0 < (2
· (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
| 348 | 323, 325,
331, 347 | divgt0d 12204 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 0 <
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) |
| 349 | 320, 348 | elrpd 13075 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℝ+) |
| 350 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → 𝑓 ∘r ≤ 𝐹) |
| 351 | 350 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑓 ∘r ≤ 𝐹) |
| 352 | | ffn 6735 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ 𝐹 Fn
ℝ) |
| 353 | 35, 180 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 Fn
ℝ) |
| 354 | 353 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → 𝑓 Fn ℝ) |
| 355 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐹 Fn ℝ ∧ 𝑓 Fn ℝ) → 𝑓 Fn ℝ) |
| 356 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐹 Fn ℝ ∧ 𝑓 Fn ℝ) → 𝐹 Fn ℝ) |
| 357 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐹 Fn ℝ ∧ 𝑓 Fn ℝ) → ℝ
∈ V) |
| 358 | | inidm 4226 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (ℝ
∩ ℝ) = ℝ |
| 359 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐹 Fn ℝ ∧ 𝑓 Fn ℝ) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) = (𝑓‘𝑧)) |
| 360 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐹 Fn ℝ ∧ 𝑓 Fn ℝ) ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
| 361 | 355, 356,
357, 357, 358, 359, 360 | ofrfval 7708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹 Fn ℝ ∧ 𝑓 Fn ℝ) → (𝑓 ∘r ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
| 362 | 352, 354,
361 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) → (𝑓 ∘r ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
| 363 | 362 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘r ≤ 𝐹 ↔ ∀𝑧 ∈ ℝ (𝑓‘𝑧) ≤ (𝐹‘𝑧))) |
| 364 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) → 𝑓 ∈ dom
∫1) |
| 365 | 364 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) → (𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom
∫1)) |
| 366 | 365, 194 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈
ℝ)) |
| 367 | | breq1 5145 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (0 =
if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → (0 ≤ (𝐹‘𝑧) ↔ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
| 368 | | breq1 5145 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧) ↔ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
| 369 | | simplll 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝐹:ℝ⟶(0[,]+∞)) |
| 370 | 369 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝐹‘𝑧) ∈ (0[,]+∞)) |
| 371 | 370, 100 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝐹‘𝑧) ∈ ℝ* ∧ 0 ≤
(𝐹‘𝑧))) |
| 372 | 371 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → 0 ≤
(𝐹‘𝑧)) |
| 373 | 372 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) ∧ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) → 0 ≤
(𝐹‘𝑧)) |
| 374 | | oveq1 7439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 375 | 374 | breq1d 5152 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) → ((((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧) ↔ (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧))) |
| 376 | | oveq1 7439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (0 =
if((0 ≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) → (0 +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 377 | 376 | breq1d 5152 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (0 =
if((0 ≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) → ((0 +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧) ↔ (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧))) |
| 378 | 35 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑓:ℝ⟶ℝ) |
| 379 | 378 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℝ) |
| 380 | 379 | recnd 11290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℂ) |
| 381 | 244 | recnd 11290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((∫1‘𝑓) − 𝑏) ∈ ℂ) |
| 382 | 381 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((∫1‘𝑓) − 𝑏) ∈ ℂ) |
| 383 | 255 | recnd 11290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑓 ∈ dom ∫1
→ (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℂ) |
| 384 | 383 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) ∈
ℂ) |
| 385 | 382, 384,
263 | divcld 12044 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℂ) |
| 386 | 385 | adantlll 718 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑓 ∈ dom
∫1) ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℂ) |
| 387 | 386 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℂ) |
| 388 | 380, 387 | npcand 11625 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = (𝑓‘𝑧)) |
| 389 | 388 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) = (𝑓‘𝑧)) |
| 390 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) → (𝑓‘𝑧) ≤ (𝐹‘𝑧)) |
| 391 | 389, 390 | eqbrtrd 5164 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧)) |
| 392 | 391 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) ∧ ¬ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) ∧ (0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})))) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧)) |
| 393 | 288 | pm2.24d 151 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → (¬ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0 → (0 +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧))) |
| 394 | 393 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((¬
if((0 ≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0 ∧ ¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})))) → (0 +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧)) |
| 395 | 394 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) ∧ ¬ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) ∧ ¬ (0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})))) → (0 +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧)) |
| 396 | 375, 377,
392, 395 | ifbothda 4563 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) ∧ ¬ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) → (if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ (𝐹‘𝑧)) |
| 397 | 367, 368,
373, 396 | ifbothda 4563 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ (𝑓‘𝑧) ≤ (𝐹‘𝑧)) → if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧)) |
| 398 | 397 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑓 ∈ dom ∫1)
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) ≤ (𝐹‘𝑧) → if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
| 399 | 366, 398 | sylanl1 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) ≤ (𝐹‘𝑧) → if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
| 400 | 399 | ralimdva 3166 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (∀𝑧 ∈ ℝ (𝑓‘𝑧) ≤ (𝐹‘𝑧) → ∀𝑧 ∈ ℝ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
| 401 | 363, 400 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘r ≤ 𝐹 → ∀𝑧 ∈ ℝ if(if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
| 402 | 351, 401 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ∀𝑧 ∈ ℝ if(if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧)) |
| 403 | | ovex 7465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∈ V |
| 404 | 105, 403 | ifex 4575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ if(if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ∈ V |
| 405 | 404 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑧 ∈ ℝ)
→ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ∈
V) |
| 406 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (𝑧 ∈ ℝ
↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) = (𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))))) |
| 407 | 104, 405,
99, 406, 67 | ofrfval2 7719 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ((𝑧 ∈ ℝ
↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) ∘r ≤
𝐹 ↔ ∀𝑧 ∈ ℝ if(if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
| 408 | 407 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((𝑧 ∈ ℝ ↦ if(if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) ∘r ≤
𝐹 ↔ ∀𝑧 ∈ ℝ if(if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) ≤ (𝐹‘𝑧))) |
| 409 | 402, 408 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if(if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) ∘r ≤
𝐹) |
| 410 | | oveq2 7440 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 =
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) → (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦) = (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 411 | 410 | ifeq2d 4545 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 =
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) → if(if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦)) = if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) |
| 412 | 411 | mpteq2dv 5243 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 =
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) → (𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))))) |
| 413 | 412 | breq1d 5152 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 =
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) → ((𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹 ↔ (𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) ∘r ≤
𝐹)) |
| 414 | 413 | rspcev 3621 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈ ℝ+
∧ (𝑧 ∈ ℝ
↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) +
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) ∘r ≤
𝐹) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹) |
| 415 | 349, 409,
414 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹) |
| 416 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) = 𝑔 → (∫1‘(𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)) |
| 417 | 416 | eqcoms 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) →
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)) |
| 418 | 417 | biantrud 531 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) → (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)))) |
| 419 | | nfmpt1 5249 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
Ⅎ𝑧(𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 420 | 419 | nfeq2 2922 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Ⅎ𝑧 𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 421 | | fveq1 6904 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) → (𝑔‘𝑧) = ((𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧)) |
| 422 | 310, 105 | ifex 4575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ∈
V |
| 423 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 424 | 423 | fvmpt2 7026 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑧 ∈ ℝ ∧ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ∈ V) →
((𝑧 ∈ ℝ ↦
if((0 ≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧) = if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 425 | 422, 424 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 ∈ ℝ → ((𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))‘𝑧) = if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 426 | 421, 425 | sylan9eq 2796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∧ 𝑧 ∈ ℝ) → (𝑔‘𝑧) = if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 427 | 426 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∧ 𝑧 ∈ ℝ) → ((𝑔‘𝑧) = 0 ↔ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0)) |
| 428 | 426 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∧ 𝑧 ∈ ℝ) → ((𝑔‘𝑧) + 𝑦) = (if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦)) |
| 429 | 427, 428 | ifbieq2d 4551 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∧ 𝑧 ∈ ℝ) →
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦)) = if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) |
| 430 | 420, 429 | mpteq2da 5239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) → (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) = (𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦)))) |
| 431 | 430 | breq1d 5152 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) → ((𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ (𝑧 ∈ ℝ ↦ if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹)) |
| 432 | 431 | rexbidv 3178 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) → (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ↔ ∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if(if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹)) |
| 433 | 418, 432 | bitr3d 281 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑔 = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) → ((∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)) ↔ ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹)) |
| 434 | 433 | rspcev 3621 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1 ∧ ∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦ if(if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0, 0, (if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) + 𝑦))) ∘r ≤ 𝐹) → ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔))) |
| 435 | 319, 415,
434 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔))) |
| 436 | | simplrr 777 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 ∈
ℝ) |
| 437 | 199 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈ V) |
| 438 | 235, 105 | ifex 4575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0) ∈
V |
| 439 | 438 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0) ∈
V) |
| 440 | | fconstmpt 5746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) = (𝑧 ∈ ℝ ↦
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) |
| 441 | 440 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) = (𝑧 ∈ ℝ ↦
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 442 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) |
| 443 | 196, 437,
439, 441, 442 | offval2 7718 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (𝑧 ∈ ℝ ↦
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) |
| 444 | | ovif2 7533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 1),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ·
0)) |
| 445 | 266, 267 | ifeq12d 4546 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 1),
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · 0)) = if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) |
| 446 | 444, 445 | eqtrid 2788 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) |
| 447 | 446 | mpteq2dv 5243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) |
| 448 | 443, 447 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) |
| 449 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) |
| 450 | 449 | i1f1 25726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((◡𝑓 “ (ran 𝑓 ∖ {0})) ∈ dom vol ∧
(vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) ∈ dom
∫1) |
| 451 | 247, 252,
450 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 ∈ dom ∫1
→ (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) ∈ dom
∫1) |
| 452 | 451 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)) ∈ dom
∫1) |
| 453 | 452, 264 | i1fmulc 25739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((ℝ
× {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) ∈ dom
∫1) |
| 454 | 448, 453 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈ dom
∫1) |
| 455 | | i1fsub 25744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈ dom
∫1) → (𝑓 ∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1) |
| 456 | 233, 454,
455 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1) |
| 457 | | itg1cl 25721 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1 → (∫1‘(𝑓 ∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) ∈
ℝ) |
| 458 | 456, 457 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) ∈
ℝ) |
| 459 | 458 | adantlrl 720 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) ∈
ℝ) |
| 460 | 318 | adantlrl 720 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1) |
| 461 | | itg1cl 25721 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1 → (∫1‘(𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) ∈
ℝ) |
| 462 | 460, 461 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) ∈
ℝ) |
| 463 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 <
(∫1‘𝑓)) |
| 464 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ 𝑏 ∈
ℝ) |
| 465 | 8 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ (∫1‘𝑓) ∈ ℝ) |
| 466 | 97 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ 2 ∈ ℝ+) |
| 467 | 464, 465,
466 | ltdiv1d 13123 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ (𝑏 <
(∫1‘𝑓)
↔ (𝑏 / 2) <
((∫1‘𝑓) / 2))) |
| 468 | | recn 11246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 ∈ ℝ → 𝑏 ∈
ℂ) |
| 469 | 468 | 2halvesd 12514 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑏 ∈ ℝ → ((𝑏 / 2) + (𝑏 / 2)) = 𝑏) |
| 470 | 469 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑏 ∈ ℝ → (((𝑏 / 2) + (𝑏 / 2)) − (𝑏 / 2)) = (𝑏 − (𝑏 / 2))) |
| 471 | 468 | halfcld 12513 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑏 ∈ ℝ → (𝑏 / 2) ∈
ℂ) |
| 472 | 471, 471 | pncand 11622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑏 ∈ ℝ → (((𝑏 / 2) + (𝑏 / 2)) − (𝑏 / 2)) = (𝑏 / 2)) |
| 473 | 470, 472 | eqtr3d 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ∈ ℝ → (𝑏 − (𝑏 / 2)) = (𝑏 / 2)) |
| 474 | 473 | breq1d 5152 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑏 ∈ ℝ → ((𝑏 − (𝑏 / 2)) < ((∫1‘𝑓) / 2) ↔ (𝑏 / 2) <
((∫1‘𝑓) / 2))) |
| 475 | 474 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((𝑏 − (𝑏 / 2)) <
((∫1‘𝑓) / 2) ↔ (𝑏 / 2) < ((∫1‘𝑓) / 2))) |
| 476 | | rehalfcl 12495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ∈ ℝ → (𝑏 / 2) ∈
ℝ) |
| 477 | 476 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ (𝑏 / 2) ∈
ℝ) |
| 478 | 8 | rehalfcld 12515 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 ∈ dom ∫1
→ ((∫1‘𝑓) / 2) ∈ ℝ) |
| 479 | 478 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((∫1‘𝑓) / 2) ∈ ℝ) |
| 480 | 464, 477,
479 | ltsubaddd 11860 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((𝑏 − (𝑏 / 2)) <
((∫1‘𝑓) / 2) ↔ 𝑏 < (((∫1‘𝑓) / 2) + (𝑏 / 2)))) |
| 481 | 467, 475,
480 | 3bitr2d 307 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ (𝑏 <
(∫1‘𝑓)
↔ 𝑏 <
(((∫1‘𝑓) / 2) + (𝑏 / 2)))) |
| 482 | 481 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑏 <
(∫1‘𝑓)
↔ 𝑏 <
(((∫1‘𝑓) / 2) + (𝑏 / 2)))) |
| 483 | 482 | adantlrl 720 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑏 <
(∫1‘𝑓)
↔ 𝑏 <
(((∫1‘𝑓) / 2) + (𝑏 / 2)))) |
| 484 | 463, 483 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 <
(((∫1‘𝑓) / 2) + (𝑏 / 2))) |
| 485 | 452, 264 | itg1mulc 25740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘((ℝ × {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) =
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ·
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))))) |
| 486 | 448 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘((ℝ × {(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))}) ∘f
· (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) =
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) |
| 487 | 449 | itg11 25727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((◡𝑓 “ (ran 𝑓 ∖ {0})) ∈ dom vol ∧
(vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈ ℝ) →
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
| 488 | 247, 252,
487 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0))) = (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
| 489 | 488 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 ∈ dom ∫1
→ ((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ·
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) =
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
| 490 | 489 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ·
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) =
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
| 491 | 252 | recnd 11290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑓 ∈ dom ∫1
→ (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℂ) |
| 492 | 491 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ∈
ℂ) |
| 493 | 265, 492 | mulcomd 11283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) · (vol‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) = ((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 494 | 249 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) = (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) |
| 495 | 494 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
((∫1‘𝑓) − 𝑏)) = ((vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
((∫1‘𝑓) − 𝑏))) |
| 496 | 259, 382 | mulcomd 11283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
((∫1‘𝑓) − 𝑏)) = (((∫1‘𝑓) − 𝑏) · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
| 497 | 495, 496 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
((∫1‘𝑓) − 𝑏)) = (((∫1‘𝑓) − 𝑏) · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
| 498 | 497 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
((∫1‘𝑓) − 𝑏)) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) =
((((∫1‘𝑓) − 𝑏) · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) / (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) |
| 499 | 492, 382,
384, 263 | divassd 12079 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
((∫1‘𝑓) − 𝑏)) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) = ((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 500 | 382, 257,
259, 261, 262 | divcan5rd 12071 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))) / (2 ·
(vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) =
(((∫1‘𝑓) − 𝑏) / 2)) |
| 501 | 498, 499,
500 | 3eqtr3d 2784 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((vol‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ·
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) =
(((∫1‘𝑓) − 𝑏) / 2)) |
| 502 | 490, 493,
501 | 3eqtrd 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ·
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})), 1, 0)))) =
(((∫1‘𝑓) − 𝑏) / 2)) |
| 503 | 485, 486,
502 | 3eqtr3d 2784 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) =
(((∫1‘𝑓) − 𝑏) / 2)) |
| 504 | 503 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((∫1‘𝑓) − (∫1‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) =
((∫1‘𝑓) − (((∫1‘𝑓) − 𝑏) / 2))) |
| 505 | | itg1sub 25745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑧 ∈ ℝ
↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈ dom
∫1) → (∫1‘(𝑓 ∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) =
((∫1‘𝑓) − (∫1‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))))) |
| 506 | 233, 454,
505 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) =
((∫1‘𝑓) − (∫1‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))))) |
| 507 | 8 | recnd 11290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘𝑓) ∈ ℂ) |
| 508 | 507 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘𝑓)
∈ ℂ) |
| 509 | 468 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 ∈
ℂ) |
| 510 | 508, 509,
257, 261 | divsubdird 12083 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − 𝑏) / 2) = (((∫1‘𝑓) / 2) − (𝑏 / 2))) |
| 511 | 510 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((∫1‘𝑓) − (((∫1‘𝑓) − 𝑏) / 2)) = ((∫1‘𝑓) −
(((∫1‘𝑓) / 2) − (𝑏 / 2)))) |
| 512 | 507 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ (∫1‘𝑓) ∈ ℂ) |
| 513 | 512 | halfcld 12513 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((∫1‘𝑓) / 2) ∈ ℂ) |
| 514 | 471 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ (𝑏 / 2) ∈
ℂ) |
| 515 | 512, 513,
514 | subsubd 11649 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
→ ((∫1‘𝑓) − (((∫1‘𝑓) / 2) − (𝑏 / 2))) =
(((∫1‘𝑓) − ((∫1‘𝑓) / 2)) + (𝑏 / 2))) |
| 516 | 515 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
((∫1‘𝑓) − (((∫1‘𝑓) / 2) − (𝑏 / 2))) =
(((∫1‘𝑓) − ((∫1‘𝑓) / 2)) + (𝑏 / 2))) |
| 517 | 507 | 2halvesd 12514 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑓 ∈ dom ∫1
→ (((∫1‘𝑓) / 2) + ((∫1‘𝑓) / 2)) =
(∫1‘𝑓)) |
| 518 | 517 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 ∈ dom ∫1
→ ((((∫1‘𝑓) / 2) + ((∫1‘𝑓) / 2)) −
((∫1‘𝑓) / 2)) = ((∫1‘𝑓) −
((∫1‘𝑓) / 2))) |
| 519 | 507 | halfcld 12513 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑓 ∈ dom ∫1
→ ((∫1‘𝑓) / 2) ∈ ℂ) |
| 520 | 519, 519 | pncand 11622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 ∈ dom ∫1
→ ((((∫1‘𝑓) / 2) + ((∫1‘𝑓) / 2)) −
((∫1‘𝑓) / 2)) = ((∫1‘𝑓) / 2)) |
| 521 | 518, 520 | eqtr3d 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 ∈ dom ∫1
→ ((∫1‘𝑓) − ((∫1‘𝑓) / 2)) =
((∫1‘𝑓) / 2)) |
| 522 | 521 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓 ∈ dom ∫1
→ (((∫1‘𝑓) − ((∫1‘𝑓) / 2)) + (𝑏 / 2)) = (((∫1‘𝑓) / 2) + (𝑏 / 2))) |
| 523 | 522 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) − ((∫1‘𝑓) / 2)) + (𝑏 / 2)) = (((∫1‘𝑓) / 2) + (𝑏 / 2))) |
| 524 | 511, 516,
523 | 3eqtrrd 2781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(((∫1‘𝑓) / 2) + (𝑏 / 2)) = ((∫1‘𝑓) −
(((∫1‘𝑓) − 𝑏) / 2))) |
| 525 | 504, 506,
524 | 3eqtr4d 2786 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) =
(((∫1‘𝑓) / 2) + (𝑏 / 2))) |
| 526 | 525 | adantlrl 720 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) =
(((∫1‘𝑓) / 2) + (𝑏 / 2))) |
| 527 | 484, 526 | breqtrrd 5170 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 <
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))))) |
| 528 | 456 | adantlrl 720 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1) |
| 529 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0)) |
| 530 | 529 | adantlrl 720 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0)) |
| 531 | 233, 36 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ ℝ) |
| 532 | 264 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) →
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))) ∈
ℝ) |
| 533 | 531, 532 | resubcld 11692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∈
ℝ) |
| 534 | 533 | leidd 11830 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 535 | 534 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 536 | 285 | breq2d 5154 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) |
| 537 | 536 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) |
| 538 | 535, 537 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 539 | 533 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∈
ℝ) |
| 540 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → 0 ∈
ℝ) |
| 541 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → 0 ∈
ℝ) |
| 542 | 533, 541 | ltnled 11409 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) < 0 ↔ ¬ 0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) |
| 543 | 542 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) < 0) |
| 544 | 539, 540,
543 | ltled 11410 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ 0) |
| 545 | | iffalse 4533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) |
| 546 | 545 | breq2d 5154 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ 0)) |
| 547 | 546 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → (((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ 0)) |
| 548 | 544, 547 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑓 ∈ dom
∫1 ∧ 𝑏
∈ ℝ) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 549 | 538, 548 | pm2.61dan 812 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑓 ∈ dom ∫1
∧ 𝑏 ∈ ℝ)
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 550 | 530, 549 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 551 | 550 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 552 | | iftrue 4530 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0) =
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) |
| 553 | 552 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) = ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))))) |
| 554 | | iba 527 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → (0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ↔ (0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))))) |
| 555 | 554 | bicomd 223 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → ((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) ↔ 0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))))) |
| 556 | 555 | ifbid 4548 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 557 | 553, 556 | breq12d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → (((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
| 558 | 557 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → (((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ≤ if(0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
| 559 | 551, 558 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 560 | 35 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑓:ℝ⟶ℝ) |
| 561 | 170 | eleq2d 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ 𝑧 ∈ ((◡𝑓 “ ran 𝑓) ∖ (◡𝑓 “ {0})))) |
| 562 | | eldif 3960 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑧 ∈ ((◡𝑓 “ ran 𝑓) ∖ (◡𝑓 “ {0})) ↔ (𝑧 ∈ (◡𝑓 “ ran 𝑓) ∧ ¬ 𝑧 ∈ (◡𝑓 “ {0}))) |
| 563 | 561, 562 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ (𝑧 ∈ (◡𝑓 “ ran 𝑓) ∧ ¬ 𝑧 ∈ (◡𝑓 “ {0})))) |
| 564 | 563 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑓:ℝ⟶ℝ →
(¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ ¬ (𝑧 ∈ (◡𝑓 “ ran 𝑓) ∧ ¬ 𝑧 ∈ (◡𝑓 “ {0})))) |
| 565 | 564 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
(¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) ↔ ¬ (𝑧 ∈ (◡𝑓 “ ran 𝑓) ∧ ¬ 𝑧 ∈ (◡𝑓 “ {0})))) |
| 566 | | pm4.53 987 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (¬
(𝑧 ∈ (◡𝑓 “ ran 𝑓) ∧ ¬ 𝑧 ∈ (◡𝑓 “ {0})) ↔ (¬ 𝑧 ∈ (◡𝑓 “ ran 𝑓) ∨ 𝑧 ∈ (◡𝑓 “ {0}))) |
| 567 | 207 | eleq2d 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (◡𝑓 “ ran 𝑓) ↔ 𝑧 ∈ ℝ)) |
| 568 | 567 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
𝑧 ∈ (◡𝑓 “ ran 𝑓)) |
| 569 | 568 | pm2.24d 151 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
(¬ 𝑧 ∈ (◡𝑓 “ ran 𝑓) → (𝑓‘𝑧) = 0)) |
| 570 | 181 | simplbda 499 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑓 Fn ℝ ∧ 𝑧 ∈ (◡𝑓 “ {0})) → (𝑓‘𝑧) = 0) |
| 571 | 570 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑓 Fn ℝ → (𝑧 ∈ (◡𝑓 “ {0}) → (𝑓‘𝑧) = 0)) |
| 572 | 180, 571 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑓:ℝ⟶ℝ →
(𝑧 ∈ (◡𝑓 “ {0}) → (𝑓‘𝑧) = 0)) |
| 573 | 572 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
(𝑧 ∈ (◡𝑓 “ {0}) → (𝑓‘𝑧) = 0)) |
| 574 | 569, 573 | jaod 859 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
((¬ 𝑧 ∈ (◡𝑓 “ ran 𝑓) ∨ 𝑧 ∈ (◡𝑓 “ {0})) → (𝑓‘𝑧) = 0)) |
| 575 | 566, 574 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
(¬ (𝑧 ∈ (◡𝑓 “ ran 𝑓) ∧ ¬ 𝑧 ∈ (◡𝑓 “ {0})) → (𝑓‘𝑧) = 0)) |
| 576 | 565, 575 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) →
(¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → (𝑓‘𝑧) = 0)) |
| 577 | 576 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑓:ℝ⟶ℝ ∧
𝑧 ∈ ℝ) ∧
¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → (𝑓‘𝑧) = 0) |
| 578 | 560, 577 | sylanl1 680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → (𝑓‘𝑧) = 0) |
| 579 | 578 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑧) − 0) = (0 −
0)) |
| 580 | 579, 224 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑧) − 0) = 0) |
| 581 | 580, 30 | eqbrtrdi 5181 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑧) − 0) ≤ 0) |
| 582 | | iffalse 4533 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0) = 0) |
| 583 | 582 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) = ((𝑓‘𝑧) − 0)) |
| 584 | 289, 288 | sylbir 235 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((¬ 0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∨ ¬ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) |
| 585 | 584 | olcs 876 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) = 0) |
| 586 | 583, 585 | breq12d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})) → (((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − 0) ≤ 0)) |
| 587 | 586 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → (((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ↔ ((𝑓‘𝑧) − 0) ≤ 0)) |
| 588 | 581, 587 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝑓 ∈ dom
∫1 ∧ (𝑏
< (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) ∧ ¬
𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))) → ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 589 | 559, 588 | pm2.61dan 812 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 590 | 589 | ralrimiva 3145 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ∀𝑧 ∈ ℝ ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) |
| 591 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ℝ ∈
V) |
| 592 | | ovex 7465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈
V |
| 593 | 592 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ∈
V) |
| 594 | 422 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0) ∈
V) |
| 595 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓‘𝑧) ∈ V |
| 596 | 595 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → (𝑓‘𝑧) ∈ V) |
| 597 | 199, 105 | ifex 4575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0) ∈
V |
| 598 | 597 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0) ∈
V) |
| 599 | 70 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑓 = (𝑧 ∈ ℝ ↦ (𝑓‘𝑧))) |
| 600 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) |
| 601 | 591, 596,
598, 599, 600 | offval2 7718 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) = (𝑧 ∈ ℝ ↦ ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) |
| 602 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) = (𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
| 603 | 591, 593,
594, 601, 602 | ofrfval2 7719 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ((𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∘r
≤ (𝑧 ∈ ℝ
↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ↔ ∀𝑧 ∈ ℝ ((𝑓‘𝑧) − if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)) ≤ if((0 ≤
((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
| 604 | 590, 603 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → (𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∘r
≤ (𝑧 ∈ ℝ
↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) |
| 605 | | itg1le 25749 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∘f −
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∈ dom
∫1 ∧ (𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)) ∈ dom
∫1 ∧ (𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0))) ∘r
≤ (𝑧 ∈ ℝ
↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) ≤
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))) |
| 606 | 528, 460,
604, 605 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) →
(∫1‘(𝑓
∘f − (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0})),
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))))), 0)))) ≤
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))) |
| 607 | 436, 459,
462, 527, 606 | ltletrd 11422 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑓 ∈ dom ∫1
∧ (𝑏 <
(∫1‘𝑓)
∧ 𝑏 ∈ ℝ))
∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 <
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))) |
| 608 | 607 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑓 ∈ dom ∫1
∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 <
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))) |
| 609 | 608 | adantlll 718 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → 𝑏 <
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))) |
| 610 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∫1‘(𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) ∈
V |
| 611 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 =
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) → (𝑎 =
(∫1‘𝑔)
↔ (∫1‘(𝑧 ∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔))) |
| 612 | 611 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 =
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) →
((∃𝑦 ∈
ℝ+ (𝑧
∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)))) |
| 613 | 612 | rexbidv 3178 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 =
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) → (∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)))) |
| 614 | | breq2 5146 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 =
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) → (𝑏 < 𝑎 ↔ 𝑏 < (∫1‘(𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))))) |
| 615 | 613, 614 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 =
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) →
((∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎) ↔ (∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)) ∧ 𝑏 < (∫1‘(𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))))) |
| 616 | 610, 615 | spcev 3605 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∃𝑔 ∈
dom ∫1(∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧
(∫1‘(𝑧
∈ ℝ ↦ if((0 ≤ ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0))) =
(∫1‘𝑔)) ∧ 𝑏 < (∫1‘(𝑧 ∈ ℝ ↦ if((0
≤ ((𝑓‘𝑧) −
(((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))) ∧ 𝑧 ∈ (◡𝑓 “ (ran 𝑓 ∖ {0}))), ((𝑓‘𝑧) − (((∫1‘𝑓) − 𝑏) / (2 · (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0})))))), 0)))) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
| 617 | 435, 609,
616 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) ∧ (vol*‘(◡𝑓 “ (ran 𝑓 ∖ {0}))) ≠ 0) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
| 618 | 192, 617 | pm2.61dane 3028 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ (𝑏 < (∫1‘𝑓) ∧ 𝑏 ∈ ℝ)) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
| 619 | 618 | expr 456 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) → (𝑏 ∈ ℝ → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
| 620 | 619 | adantllr 719 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) → (𝑏 ∈ ℝ → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
| 621 | 620 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) → (𝑏 ∈ ℝ → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
| 622 | 157, 621 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑏 ∈ ℝ*)
∧ (𝑓 ∈ dom
∫1 ∧ (𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) ∧ 𝑏 ≠ -∞) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
| 623 | 139, 622 | pm2.61dane 3028 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) ∧ 𝑏 < (∫1‘𝑓)) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
| 624 | 623 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) → (𝑏 < (∫1‘𝑓) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
| 625 | 94, 624 | sylbid 240 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) → (𝑏 < 𝑠 → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
| 626 | 625 | imp 406 |
. . . . . . . . . . . 12
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) ∧ 𝑏 < 𝑠) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
| 627 | 626 | an32s 652 |
. . . . . . . . . . 11
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ 𝑏 < 𝑠) ∧ (𝑓 ∈ dom ∫1 ∧ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
| 628 | 627 | rexlimdvaa 3155 |
. . . . . . . . . 10
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) ∧ 𝑏 < 𝑠) → (∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
| 629 | 628 | expimpd 453 |
. . . . . . . . 9
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → ((𝑏 < 𝑠 ∧ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓))) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
| 630 | 629 | ancomsd 465 |
. . . . . . . 8
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → ((∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)) ∧ 𝑏 < 𝑠) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
| 631 | 630 | exlimdv 1932 |
. . . . . . 7
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → (∃𝑠(∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)) ∧ 𝑏 < 𝑠) → ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎))) |
| 632 | | eqeq1 2740 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → (𝑥 = (∫1‘𝑓) ↔ 𝑠 = (∫1‘𝑓))) |
| 633 | 632 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑥 = 𝑠 → ((𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) ↔ (𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)))) |
| 634 | 633 | rexbidv 3178 |
. . . . . . . 8
⊢ (𝑥 = 𝑠 → (∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓)) ↔ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑠 =
(∫1‘𝑓)))) |
| 635 | 634 | rexab 3699 |
. . . . . . 7
⊢
(∃𝑠 ∈
{𝑥 ∣ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}𝑏 < 𝑠 ↔ ∃𝑠(∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = (∫1‘𝑓)) ∧ 𝑏 < 𝑠)) |
| 636 | | eqeq1 2740 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (𝑥 = (∫1‘𝑔) ↔ 𝑎 = (∫1‘𝑔))) |
| 637 | 636 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → ((∃𝑦 ∈ ℝ+ (𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ (∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)))) |
| 638 | 637 | rexbidv 3178 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)))) |
| 639 | 638 | rexab 3699 |
. . . . . . 7
⊢
(∃𝑎 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑏 < 𝑎 ↔ ∃𝑎(∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑎 = (∫1‘𝑔)) ∧ 𝑏 < 𝑎)) |
| 640 | 631, 635,
639 | 3imtr4g 296 |
. . . . . 6
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → (∃𝑠 ∈ {𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}𝑏 < 𝑠 → ∃𝑎 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(∃𝑦 ∈ ℝ+
(𝑧 ∈ ℝ ↦
if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑏 < 𝑎)) |
| 641 | 92, 640 | sylbid 240 |
. . . . 5
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑏 ∈
ℝ*) → (𝑏 < sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, < )
→ ∃𝑎 ∈
{𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑏 < 𝑎)) |
| 642 | 641 | impr 454 |
. . . 4
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑏 ∈
ℝ* ∧ 𝑏
< sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, < ))) →
∃𝑎 ∈ {𝑥 ∣ ∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑏 < 𝑎) |
| 643 | 6, 15, 89, 642 | eqsupd 9498 |
. . 3
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ sup({𝑥 ∣
∃𝑔 ∈ dom
∫1(∃𝑦
∈ ℝ+ (𝑧 ∈ ℝ ↦ if((𝑔‘𝑧) = 0, 0, ((𝑔‘𝑧) + 𝑦))) ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )
= sup({𝑥 ∣
∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ 𝑥 =
(∫1‘𝑓))}, ℝ*, <
)) |
| 644 | 4, 643 | eqtrid 2788 |
. 2
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ sup(𝐿,
ℝ*, < ) = sup({𝑥 ∣ ∃𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑓))}, ℝ*, <
)) |
| 645 | 2, 644 | eqtr4d 2779 |
1
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∫2‘𝐹) = sup(𝐿, ℝ*, <
)) |