Proof of Theorem bnj1174
| Step | Hyp | Ref
| Expression |
| 1 | | bnj1174.59 |
. . . . 5
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)))) |
| 2 | | bnj1174.74 |
. . . . . . . . . . . 12
⊢ (𝜃 → (𝑤𝑅𝑧 → 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅))) |
| 3 | | bnj1174.3 |
. . . . . . . . . . . . . . . 16
⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) |
| 4 | 3 | eleq2i 2833 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝐶 ↔ 𝑤 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
| 5 | 4 | notbii 320 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑤 ∈ 𝐶 ↔ ¬ 𝑤 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
| 6 | | ianor 984 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑤 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑤 ∈ 𝐵) ↔ (¬ 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅) ∨ ¬ 𝑤 ∈ 𝐵)) |
| 7 | | elin 3967 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ↔ (𝑤 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑤 ∈ 𝐵)) |
| 8 | 7 | notbii 320 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑤 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ↔ ¬ (𝑤 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑤 ∈ 𝐵)) |
| 9 | | pm4.62 857 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ trCl(𝑋, 𝐴, 𝑅) → ¬ 𝑤 ∈ 𝐵) ↔ (¬ 𝑤 ∈ trCl(𝑋, 𝐴, 𝑅) ∨ ¬ 𝑤 ∈ 𝐵)) |
| 10 | 6, 8, 9 | 3bitr4i 303 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑤 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ↔ (𝑤 ∈ trCl(𝑋, 𝐴, 𝑅) → ¬ 𝑤 ∈ 𝐵)) |
| 11 | 10 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑤 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) → (𝑤 ∈ trCl(𝑋, 𝐴, 𝑅) → ¬ 𝑤 ∈ 𝐵)) |
| 12 | 11 | impcom 407 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ ¬ 𝑤 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) → ¬ 𝑤 ∈ 𝐵) |
| 13 | 5, 12 | sylan2b 594 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ ¬ 𝑤 ∈ 𝐶) → ¬ 𝑤 ∈ 𝐵) |
| 14 | 13 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ trCl(𝑋, 𝐴, 𝑅) → (¬ 𝑤 ∈ 𝐶 → ¬ 𝑤 ∈ 𝐵)) |
| 15 | 2, 14 | syl6 35 |
. . . . . . . . . . 11
⊢ (𝜃 → (𝑤𝑅𝑧 → (¬ 𝑤 ∈ 𝐶 → ¬ 𝑤 ∈ 𝐵))) |
| 16 | 15 | a2d 29 |
. . . . . . . . . 10
⊢ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))) |
| 17 | 16 | biantru 529 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶))) ↔ ((𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶))) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
| 18 | | df-3an 1089 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) ↔ ((𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶))) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
| 19 | | 3anass 1095 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) ↔ (𝑧 ∈ 𝐶 ∧ ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))))) |
| 20 | 17, 18, 19 | 3bitr2i 299 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶))) ↔ (𝑧 ∈ 𝐶 ∧ ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))))) |
| 21 | 20 | imbi2i 336 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)))) ↔ ((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))))) |
| 22 | 21 | albii 1819 |
. . . . . 6
⊢
(∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)))) ↔ ∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))))) |
| 23 | 22 | exbii 1848 |
. . . . 5
⊢
(∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)))) ↔ ∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))))) |
| 24 | 1, 23 | mpbi 230 |
. . . 4
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))))) |
| 25 | | imdi 389 |
. . . . . . . 8
⊢ ((𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))) ↔ ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) → (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) |
| 26 | | pm3.35 803 |
. . . . . . . 8
⊢ (((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) ∧ ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) → (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) → (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))) |
| 27 | 25, 26 | sylan2b 594 |
. . . . . . 7
⊢ (((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) → (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))) |
| 28 | 27 | anim2i 617 |
. . . . . 6
⊢ ((𝑧 ∈ 𝐶 ∧ ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) |
| 29 | 28 | imim2i 16 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))))) → ((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
| 30 | 29 | alimi 1811 |
. . . 4
⊢
(∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶)) ∧ (𝜃 → ((𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐶) → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))))) → ∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
| 31 | 24, 30 | bnj101 34737 |
. . 3
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) |
| 32 | | ancl 544 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) → ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ∧ (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))))) |
| 33 | | bnj256 34720 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))) ↔ ((𝜑 ∧ 𝜓) ∧ (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
| 34 | 32, 33 | imbitrrdi 252 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) → ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
| 35 | 34 | alimi 1811 |
. . 3
⊢
(∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) → ∀𝑤((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
| 36 | 31, 35 | bnj101 34737 |
. 2
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) |
| 37 | | df-bnj17 34701 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))) ↔ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) |
| 38 | 37 | imbi2i 336 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) ↔ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
| 39 | 38 | albii 1819 |
. . 3
⊢
(∀𝑤((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) ↔ ∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
| 40 | 39 | exbii 1848 |
. 2
⊢
(∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) ↔ ∃𝑧∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
| 41 | 36, 40 | mpbi 230 |
1
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) |