Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0nex Structured version   Visualization version   GIF version

Theorem cdleme0nex 38304
Description: Part of proof of Lemma E in [Crawley] p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p q/0 (i.e. the sublattice from 0 to p q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a 38225- which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 37357, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012.)
Hypotheses
Ref Expression
cdleme0nex.l = (le‘𝐾)
cdleme0nex.j = (join‘𝐾)
cdleme0nex.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdleme0nex (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 = 𝑃𝑅 = 𝑄))
Distinct variable groups:   𝐴,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑅,𝑟   𝑊,𝑟
Allowed substitution hint:   𝐾(𝑟)

Proof of Theorem cdleme0nex
StepHypRef Expression
1 simp3r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ 𝑅 𝑊)
2 simp12 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑅 (𝑃 𝑄))
31, 2jca 512 . . 3 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (¬ 𝑅 𝑊𝑅 (𝑃 𝑄)))
4 simp3l 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑅𝐴)
5 simp13 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
6 ralnex 3167 . . . . . . 7 (∀𝑟𝐴 ¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
75, 6sylibr 233 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ∀𝑟𝐴 ¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
8 breq1 5077 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑟 𝑊𝑅 𝑊))
98notbid 318 . . . . . . . . 9 (𝑟 = 𝑅 → (¬ 𝑟 𝑊 ↔ ¬ 𝑅 𝑊))
10 oveq2 7283 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑃 𝑟) = (𝑃 𝑅))
11 oveq2 7283 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
1210, 11eqeq12d 2754 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
139, 12anbi12d 631 . . . . . . . 8 (𝑟 = 𝑅 → ((¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅))))
1413notbid 318 . . . . . . 7 (𝑟 = 𝑅 → (¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ¬ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅))))
1514rspcva 3559 . . . . . 6 ((𝑅𝐴 ∧ ∀𝑟𝐴 ¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ¬ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)))
164, 7, 15syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)))
17 simp11 1202 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐾 ∈ HL)
18 hlcvl 37373 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐾 ∈ CvLat)
20 simp21 1205 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃𝐴)
21 simp22 1206 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑄𝐴)
22 simp23 1207 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃𝑄)
23 cdleme0nex.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
24 cdleme0nex.l . . . . . . . 8 = (le‘𝐾)
25 cdleme0nex.j . . . . . . . 8 = (join‘𝐾)
2623, 24, 25cvlsupr2 37357 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
2719, 20, 21, 4, 22, 26syl131anc 1382 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
2827anbi2d 629 . . . . 5 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ↔ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))
2916, 28mtbid 324 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
30 ianor 979 . . . . 5 (¬ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))) ↔ (¬ (𝑅𝑃𝑅𝑄) ∨ ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
31 df-3an 1088 . . . . . . . 8 ((𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)) ↔ ((𝑅𝑃𝑅𝑄) ∧ 𝑅 (𝑃 𝑄)))
3231anbi2i 623 . . . . . . 7 ((¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) ↔ (¬ 𝑅 𝑊 ∧ ((𝑅𝑃𝑅𝑄) ∧ 𝑅 (𝑃 𝑄))))
33 an12 642 . . . . . . 7 ((¬ 𝑅 𝑊 ∧ ((𝑅𝑃𝑅𝑄) ∧ 𝑅 (𝑃 𝑄))) ↔ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
3432, 33bitri 274 . . . . . 6 ((¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) ↔ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
3534notbii 320 . . . . 5 (¬ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) ↔ ¬ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
36 pm4.62 853 . . . . 5 (((𝑅𝑃𝑅𝑄) → ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))) ↔ (¬ (𝑅𝑃𝑅𝑄) ∨ ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
3730, 35, 363bitr4ri 304 . . . 4 (((𝑅𝑃𝑅𝑄) → ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))) ↔ ¬ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
3829, 37sylibr 233 . . 3 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝑅𝑃𝑅𝑄) → ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
393, 38mt2d 136 . 2 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ (𝑅𝑃𝑅𝑄))
40 neanior 3037 . . 3 ((𝑅𝑃𝑅𝑄) ↔ ¬ (𝑅 = 𝑃𝑅 = 𝑄))
4140con2bii 358 . 2 ((𝑅 = 𝑃𝑅 = 𝑄) ↔ ¬ (𝑅𝑃𝑅𝑄))
4239, 41sylibr 233 1 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 = 𝑃𝑅 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  Atomscatm 37277  CvLatclc 37279  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  cdleme18c  38307  cdleme18d  38309  cdlemg17b  38676  cdlemg17h  38682
  Copyright terms: Public domain W3C validator