Proof of Theorem cdleme0nex
| Step | Hyp | Ref
| Expression |
| 1 | | simp3r 1203 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ¬ 𝑅 ≤ 𝑊) |
| 2 | | simp12 1205 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑅 ≤ (𝑃 ∨ 𝑄)) |
| 3 | 1, 2 | jca 511 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) |
| 4 | | simp3l 1202 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑅 ∈ 𝐴) |
| 5 | | simp13 1206 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) |
| 6 | | ralnex 3056 |
. . . . . . 7
⊢
(∀𝑟 ∈
𝐴 ¬ (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ↔ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) |
| 7 | 5, 6 | sylibr 234 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ∀𝑟 ∈ 𝐴 ¬ (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) |
| 8 | | breq1 5113 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑟 ≤ 𝑊 ↔ 𝑅 ≤ 𝑊)) |
| 9 | 8 | notbid 318 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (¬ 𝑟 ≤ 𝑊 ↔ ¬ 𝑅 ≤ 𝑊)) |
| 10 | | oveq2 7398 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑃 ∨ 𝑟) = (𝑃 ∨ 𝑅)) |
| 11 | | oveq2 7398 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑄 ∨ 𝑟) = (𝑄 ∨ 𝑅)) |
| 12 | 10, 11 | eqeq12d 2746 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → ((𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
| 13 | 9, 12 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ((¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ↔ (¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))) |
| 14 | 13 | notbid 318 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (¬ (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) ↔ ¬ (¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))) |
| 15 | 14 | rspcva 3589 |
. . . . . 6
⊢ ((𝑅 ∈ 𝐴 ∧ ∀𝑟 ∈ 𝐴 ¬ (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) → ¬ (¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
| 16 | 4, 7, 15 | syl2anc 584 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ¬ (¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
| 17 | | simp11 1204 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐾 ∈ HL) |
| 18 | | hlcvl 39359 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) |
| 19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐾 ∈ CvLat) |
| 20 | | simp21 1207 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
| 21 | | simp22 1208 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑄 ∈ 𝐴) |
| 22 | | simp23 1209 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑃 ≠ 𝑄) |
| 23 | | cdleme0nex.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
| 24 | | cdleme0nex.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
| 25 | | cdleme0nex.j |
. . . . . . . 8
⊢ ∨ =
(join‘𝐾) |
| 26 | 23, 24, 25 | cvlsupr2 39343 |
. . . . . . 7
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 27 | 19, 20, 21, 4, 22, 26 | syl131anc 1385 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 28 | 27 | anbi2d 630 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ (¬ 𝑅 ≤ 𝑊 ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))))) |
| 29 | 16, 28 | mtbid 324 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ¬ (¬ 𝑅 ≤ 𝑊 ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 30 | | ianor 983 |
. . . . 5
⊢ (¬
((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) ∧ (¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ↔ (¬ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) ∨ ¬ (¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 31 | | df-3an 1088 |
. . . . . . . 8
⊢ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ↔ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) |
| 32 | 31 | anbi2i 623 |
. . . . . . 7
⊢ ((¬
𝑅 ≤ 𝑊 ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ↔ (¬ 𝑅 ≤ 𝑊 ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 33 | | an12 645 |
. . . . . . 7
⊢ ((¬
𝑅 ≤ 𝑊 ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ↔ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) ∧ (¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 34 | 32, 33 | bitri 275 |
. . . . . 6
⊢ ((¬
𝑅 ≤ 𝑊 ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ↔ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) ∧ (¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 35 | 34 | notbii 320 |
. . . . 5
⊢ (¬
(¬ 𝑅 ≤ 𝑊 ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ↔ ¬ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) ∧ (¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 36 | | pm4.62 856 |
. . . . 5
⊢ (((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) → ¬ (¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ↔ (¬ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) ∨ ¬ (¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 37 | 30, 35, 36 | 3bitr4ri 304 |
. . . 4
⊢ (((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) → ¬ (¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) ↔ ¬ (¬ 𝑅 ≤ 𝑊 ∧ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 38 | 29, 37 | sylibr 234 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) → ¬ (¬ 𝑅 ≤ 𝑊 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)))) |
| 39 | 3, 38 | mt2d 136 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ¬ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) |
| 40 | | neanior 3019 |
. . 3
⊢ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄) ↔ ¬ (𝑅 = 𝑃 ∨ 𝑅 = 𝑄)) |
| 41 | 40 | con2bii 357 |
. 2
⊢ ((𝑅 = 𝑃 ∨ 𝑅 = 𝑄) ↔ ¬ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄)) |
| 42 | 39, 41 | sylibr 234 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 = 𝑃 ∨ 𝑅 = 𝑄)) |