Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0nex Structured version   Visualization version   GIF version

Theorem cdleme0nex 39156
Description: Part of proof of Lemma E in [Crawley] p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p ∨ q/0 (i.e. the sublattice from 0 to p ∨ q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a 39077- which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 38208, our (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ) is a shorter way to express π‘Ÿ β‰  𝑃 ∧ π‘Ÿ β‰  𝑄 ∧ π‘Ÿ ≀ (𝑃 ∨ 𝑄). Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012.)
Hypotheses
Ref Expression
cdleme0nex.l ≀ = (leβ€˜πΎ)
cdleme0nex.j ∨ = (joinβ€˜πΎ)
cdleme0nex.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
cdleme0nex (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝑅 = 𝑃 ∨ 𝑅 = 𝑄))
Distinct variable groups:   𝐴,π‘Ÿ   ∨ ,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   𝑄,π‘Ÿ   𝑅,π‘Ÿ   π‘Š,π‘Ÿ
Allowed substitution hint:   𝐾(π‘Ÿ)

Proof of Theorem cdleme0nex
StepHypRef Expression
1 simp3r 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ Β¬ 𝑅 ≀ π‘Š)
2 simp12 1204 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄))
31, 2jca 512 . . 3 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (Β¬ 𝑅 ≀ π‘Š ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)))
4 simp3l 1201 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝑅 ∈ 𝐴)
5 simp13 1205 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))
6 ralnex 3072 . . . . . . 7 (βˆ€π‘Ÿ ∈ 𝐴 Β¬ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)) ↔ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))
75, 6sylibr 233 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ βˆ€π‘Ÿ ∈ 𝐴 Β¬ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)))
8 breq1 5151 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (π‘Ÿ ≀ π‘Š ↔ 𝑅 ≀ π‘Š))
98notbid 317 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (Β¬ π‘Ÿ ≀ π‘Š ↔ Β¬ 𝑅 ≀ π‘Š))
10 oveq2 7416 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (𝑃 ∨ π‘Ÿ) = (𝑃 ∨ 𝑅))
11 oveq2 7416 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (𝑄 ∨ π‘Ÿ) = (𝑄 ∨ 𝑅))
1210, 11eqeq12d 2748 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ ((𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))
139, 12anbi12d 631 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ ((Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)) ↔ (Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))))
1413notbid 317 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (Β¬ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ)) ↔ Β¬ (Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))))
1514rspcva 3610 . . . . . 6 ((𝑅 ∈ 𝐴 ∧ βˆ€π‘Ÿ ∈ 𝐴 Β¬ (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) β†’ Β¬ (Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))
164, 7, 15syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ Β¬ (Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))
17 simp11 1203 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
18 hlcvl 38224 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ CvLat)
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝐾 ∈ CvLat)
20 simp21 1206 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝑃 ∈ 𝐴)
21 simp22 1207 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝑄 ∈ 𝐴)
22 simp23 1208 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ 𝑃 β‰  𝑄)
23 cdleme0nex.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
24 cdleme0nex.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
25 cdleme0nex.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
2623, 24, 25cvlsupr2 38208 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))
2719, 20, 21, 4, 22, 26syl131anc 1383 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))
2827anbi2d 629 . . . . 5 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ ((Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ↔ (Β¬ 𝑅 ≀ π‘Š ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)))))
2916, 28mtbid 323 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ Β¬ (Β¬ 𝑅 ≀ π‘Š ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))
30 ianor 980 . . . . 5 (Β¬ ((𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄) ∧ (Β¬ 𝑅 ≀ π‘Š ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ↔ (Β¬ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄) ∨ Β¬ (Β¬ 𝑅 ≀ π‘Š ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))
31 df-3an 1089 . . . . . . . 8 ((𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)) ↔ ((𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄)))
3231anbi2i 623 . . . . . . 7 ((Β¬ 𝑅 ≀ π‘Š ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ↔ (Β¬ 𝑅 ≀ π‘Š ∧ ((𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))
33 an12 643 . . . . . . 7 ((Β¬ 𝑅 ≀ π‘Š ∧ ((𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄) ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ↔ ((𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄) ∧ (Β¬ 𝑅 ≀ π‘Š ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))
3432, 33bitri 274 . . . . . 6 ((Β¬ 𝑅 ≀ π‘Š ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ↔ ((𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄) ∧ (Β¬ 𝑅 ≀ π‘Š ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))
3534notbii 319 . . . . 5 (Β¬ (Β¬ 𝑅 ≀ π‘Š ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ↔ Β¬ ((𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄) ∧ (Β¬ 𝑅 ≀ π‘Š ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))
36 pm4.62 854 . . . . 5 (((𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄) β†’ Β¬ (Β¬ 𝑅 ≀ π‘Š ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ↔ (Β¬ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄) ∨ Β¬ (Β¬ 𝑅 ≀ π‘Š ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))
3730, 35, 363bitr4ri 303 . . . 4 (((𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄) β†’ Β¬ (Β¬ 𝑅 ≀ π‘Š ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))) ↔ Β¬ (Β¬ 𝑅 ≀ π‘Š ∧ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))
3829, 37sylibr 233 . . 3 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ ((𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄) β†’ Β¬ (Β¬ 𝑅 ≀ π‘Š ∧ 𝑅 ≀ (𝑃 ∨ 𝑄))))
393, 38mt2d 136 . 2 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ Β¬ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄))
40 neanior 3035 . . 3 ((𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄) ↔ Β¬ (𝑅 = 𝑃 ∨ 𝑅 = 𝑄))
4140con2bii 357 . 2 ((𝑅 = 𝑃 ∨ 𝑅 = 𝑄) ↔ Β¬ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄))
4239, 41sylibr 233 1 (((𝐾 ∈ HL ∧ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ (𝑃 ∨ π‘Ÿ) = (𝑄 ∨ π‘Ÿ))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) β†’ (𝑅 = 𝑃 ∨ 𝑅 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  lecple 17203  joincjn 18263  Atomscatm 38128  CvLatclc 38130  HLchlt 38215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-lat 18384  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216
This theorem is referenced by:  cdleme18c  39159  cdleme18d  39161  cdlemg17b  39528  cdlemg17h  39534
  Copyright terms: Public domain W3C validator