Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0nex Structured version   Visualization version   GIF version

Theorem cdleme0nex 39991
Description: Part of proof of Lemma E in [Crawley] p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p q/0 (i.e. the sublattice from 0 to p q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a 39912- which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 39043, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012.)
Hypotheses
Ref Expression
cdleme0nex.l = (le‘𝐾)
cdleme0nex.j = (join‘𝐾)
cdleme0nex.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdleme0nex (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 = 𝑃𝑅 = 𝑄))
Distinct variable groups:   𝐴,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑅,𝑟   𝑊,𝑟
Allowed substitution hint:   𝐾(𝑟)

Proof of Theorem cdleme0nex
StepHypRef Expression
1 simp3r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ 𝑅 𝑊)
2 simp12 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑅 (𝑃 𝑄))
31, 2jca 510 . . 3 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (¬ 𝑅 𝑊𝑅 (𝑃 𝑄)))
4 simp3l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑅𝐴)
5 simp13 1202 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
6 ralnex 3062 . . . . . . 7 (∀𝑟𝐴 ¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
75, 6sylibr 233 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ∀𝑟𝐴 ¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
8 breq1 5158 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑟 𝑊𝑅 𝑊))
98notbid 317 . . . . . . . . 9 (𝑟 = 𝑅 → (¬ 𝑟 𝑊 ↔ ¬ 𝑅 𝑊))
10 oveq2 7434 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑃 𝑟) = (𝑃 𝑅))
11 oveq2 7434 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
1210, 11eqeq12d 2742 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
139, 12anbi12d 630 . . . . . . . 8 (𝑟 = 𝑅 → ((¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅))))
1413notbid 317 . . . . . . 7 (𝑟 = 𝑅 → (¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ¬ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅))))
1514rspcva 3606 . . . . . 6 ((𝑅𝐴 ∧ ∀𝑟𝐴 ¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ¬ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)))
164, 7, 15syl2anc 582 . . . . 5 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)))
17 simp11 1200 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐾 ∈ HL)
18 hlcvl 39059 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐾 ∈ CvLat)
20 simp21 1203 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃𝐴)
21 simp22 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑄𝐴)
22 simp23 1205 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃𝑄)
23 cdleme0nex.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
24 cdleme0nex.l . . . . . . . 8 = (le‘𝐾)
25 cdleme0nex.j . . . . . . . 8 = (join‘𝐾)
2623, 24, 25cvlsupr2 39043 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
2719, 20, 21, 4, 22, 26syl131anc 1380 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
2827anbi2d 628 . . . . 5 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ↔ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))
2916, 28mtbid 323 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
30 ianor 979 . . . . 5 (¬ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))) ↔ (¬ (𝑅𝑃𝑅𝑄) ∨ ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
31 df-3an 1086 . . . . . . . 8 ((𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)) ↔ ((𝑅𝑃𝑅𝑄) ∧ 𝑅 (𝑃 𝑄)))
3231anbi2i 621 . . . . . . 7 ((¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) ↔ (¬ 𝑅 𝑊 ∧ ((𝑅𝑃𝑅𝑄) ∧ 𝑅 (𝑃 𝑄))))
33 an12 643 . . . . . . 7 ((¬ 𝑅 𝑊 ∧ ((𝑅𝑃𝑅𝑄) ∧ 𝑅 (𝑃 𝑄))) ↔ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
3432, 33bitri 274 . . . . . 6 ((¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) ↔ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
3534notbii 319 . . . . 5 (¬ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) ↔ ¬ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
36 pm4.62 854 . . . . 5 (((𝑅𝑃𝑅𝑄) → ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))) ↔ (¬ (𝑅𝑃𝑅𝑄) ∨ ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
3730, 35, 363bitr4ri 303 . . . 4 (((𝑅𝑃𝑅𝑄) → ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))) ↔ ¬ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
3829, 37sylibr 233 . . 3 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝑅𝑃𝑅𝑄) → ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
393, 38mt2d 136 . 2 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ (𝑅𝑃𝑅𝑄))
40 neanior 3025 . . 3 ((𝑅𝑃𝑅𝑄) ↔ ¬ (𝑅 = 𝑃𝑅 = 𝑄))
4140con2bii 356 . 2 ((𝑅 = 𝑃𝑅 = 𝑄) ↔ ¬ (𝑅𝑃𝑅𝑄))
4239, 41sylibr 233 1 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 = 𝑃𝑅 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060   class class class wbr 5155  cfv 6556  (class class class)co 7426  lecple 17275  joincjn 18338  Atomscatm 38963  CvLatclc 38965  HLchlt 39050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-proset 18322  df-poset 18340  df-plt 18357  df-lub 18373  df-glb 18374  df-join 18375  df-meet 18376  df-p0 18452  df-lat 18459  df-covers 38966  df-ats 38967  df-atl 38998  df-cvlat 39022  df-hlat 39051
This theorem is referenced by:  cdleme18c  39994  cdleme18d  39996  cdlemg17b  40363  cdlemg17h  40369
  Copyright terms: Public domain W3C validator