Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0nex Structured version   Visualization version   GIF version

Theorem cdleme0nex 40257
Description: Part of proof of Lemma E in [Crawley] p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p q/0 (i.e. the sublattice from 0 to p q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a 40178- which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 39309, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012.)
Hypotheses
Ref Expression
cdleme0nex.l = (le‘𝐾)
cdleme0nex.j = (join‘𝐾)
cdleme0nex.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdleme0nex (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 = 𝑃𝑅 = 𝑄))
Distinct variable groups:   𝐴,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑅,𝑟   𝑊,𝑟
Allowed substitution hint:   𝐾(𝑟)

Proof of Theorem cdleme0nex
StepHypRef Expression
1 simp3r 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ 𝑅 𝑊)
2 simp12 1205 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑅 (𝑃 𝑄))
31, 2jca 511 . . 3 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (¬ 𝑅 𝑊𝑅 (𝑃 𝑄)))
4 simp3l 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑅𝐴)
5 simp13 1206 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
6 ralnex 3055 . . . . . . 7 (∀𝑟𝐴 ¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
75, 6sylibr 234 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ∀𝑟𝐴 ¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
8 breq1 5105 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑟 𝑊𝑅 𝑊))
98notbid 318 . . . . . . . . 9 (𝑟 = 𝑅 → (¬ 𝑟 𝑊 ↔ ¬ 𝑅 𝑊))
10 oveq2 7377 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑃 𝑟) = (𝑃 𝑅))
11 oveq2 7377 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑄 𝑟) = (𝑄 𝑅))
1210, 11eqeq12d 2745 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃 𝑅) = (𝑄 𝑅)))
139, 12anbi12d 632 . . . . . . . 8 (𝑟 = 𝑅 → ((¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅))))
1413notbid 318 . . . . . . 7 (𝑟 = 𝑅 → (¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ¬ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅))))
1514rspcva 3583 . . . . . 6 ((𝑅𝐴 ∧ ∀𝑟𝐴 ¬ (¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) → ¬ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)))
164, 7, 15syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ (¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)))
17 simp11 1204 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐾 ∈ HL)
18 hlcvl 39325 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
1917, 18syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐾 ∈ CvLat)
20 simp21 1207 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃𝐴)
21 simp22 1208 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑄𝐴)
22 simp23 1209 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃𝑄)
23 cdleme0nex.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
24 cdleme0nex.l . . . . . . . 8 = (le‘𝐾)
25 cdleme0nex.j . . . . . . . 8 = (join‘𝐾)
2623, 24, 25cvlsupr2 39309 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
2719, 20, 21, 4, 22, 26syl131anc 1385 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝑃 𝑅) = (𝑄 𝑅) ↔ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
2827anbi2d 630 . . . . 5 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ↔ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)))))
2916, 28mtbid 324 . . . 4 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
30 ianor 983 . . . . 5 (¬ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))) ↔ (¬ (𝑅𝑃𝑅𝑄) ∨ ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
31 df-3an 1088 . . . . . . . 8 ((𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄)) ↔ ((𝑅𝑃𝑅𝑄) ∧ 𝑅 (𝑃 𝑄)))
3231anbi2i 623 . . . . . . 7 ((¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) ↔ (¬ 𝑅 𝑊 ∧ ((𝑅𝑃𝑅𝑄) ∧ 𝑅 (𝑃 𝑄))))
33 an12 645 . . . . . . 7 ((¬ 𝑅 𝑊 ∧ ((𝑅𝑃𝑅𝑄) ∧ 𝑅 (𝑃 𝑄))) ↔ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
3432, 33bitri 275 . . . . . 6 ((¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) ↔ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
3534notbii 320 . . . . 5 (¬ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))) ↔ ¬ ((𝑅𝑃𝑅𝑄) ∧ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
36 pm4.62 856 . . . . 5 (((𝑅𝑃𝑅𝑄) → ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))) ↔ (¬ (𝑅𝑃𝑅𝑄) ∨ ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
3730, 35, 363bitr4ri 304 . . . 4 (((𝑅𝑃𝑅𝑄) → ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))) ↔ ¬ (¬ 𝑅 𝑊 ∧ (𝑅𝑃𝑅𝑄𝑅 (𝑃 𝑄))))
3829, 37sylibr 234 . . 3 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝑅𝑃𝑅𝑄) → ¬ (¬ 𝑅 𝑊𝑅 (𝑃 𝑄))))
393, 38mt2d 136 . 2 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ¬ (𝑅𝑃𝑅𝑄))
40 neanior 3018 . . 3 ((𝑅𝑃𝑅𝑄) ↔ ¬ (𝑅 = 𝑃𝑅 = 𝑄))
4140con2bii 357 . 2 ((𝑅 = 𝑃𝑅 = 𝑄) ↔ ¬ (𝑅𝑃𝑅𝑄))
4239, 41sylibr 234 1 (((𝐾 ∈ HL ∧ 𝑅 (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟))) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 = 𝑃𝑅 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  lecple 17203  joincjn 18248  Atomscatm 39229  CvLatclc 39231  HLchlt 39316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317
This theorem is referenced by:  cdleme18c  40260  cdleme18d  40262  cdlemg17b  40629  cdlemg17h  40635
  Copyright terms: Public domain W3C validator