MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupprefixmo Structured version   Visualization version   GIF version

Theorem nosupprefixmo 27192
Description: In any class of surreals, there is at most one value of the prefix property. (Contributed by Scott Fenton, 26-Nov-2021.)
Assertion
Ref Expression
nosupprefixmo (𝐴 No → ∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥   𝑢,𝐺,𝑣,𝑥

Proof of Theorem nosupprefixmo
Dummy variables 𝑦 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3226 . . . 4 (∃𝑢𝐴𝑝𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) ↔ (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
2 breq1 5150 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑣 <s 𝑝𝑢 <s 𝑝))
32notbid 317 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → (¬ 𝑣 <s 𝑝 ↔ ¬ 𝑢 <s 𝑝))
4 reseq1 5973 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑣 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺))
54eqeq2d 2743 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → ((𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺)))
63, 5imbi12d 344 . . . . . . . . . . . 12 (𝑣 = 𝑢 → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑢 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺))))
7 simprr2 1222 . . . . . . . . . . . . 13 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
87adantl 482 . . . . . . . . . . . 12 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
9 simprll 777 . . . . . . . . . . . 12 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑢𝐴)
106, 8, 9rspcdva 3613 . . . . . . . . . . 11 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (¬ 𝑢 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺)))
11 eqcom 2739 . . . . . . . . . . 11 ((𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺) ↔ (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
1210, 11imbitrdi 250 . . . . . . . . . 10 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (¬ 𝑢 <s 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)))
13 breq1 5150 . . . . . . . . . . . . 13 (𝑣 = 𝑝 → (𝑣 <s 𝑢𝑝 <s 𝑢))
1413notbid 317 . . . . . . . . . . . 12 (𝑣 = 𝑝 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑝 <s 𝑢))
15 reseq1 5973 . . . . . . . . . . . . 13 (𝑣 = 𝑝 → (𝑣 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
1615eqeq2d 2743 . . . . . . . . . . . 12 (𝑣 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)))
1714, 16imbi12d 344 . . . . . . . . . . 11 (𝑣 = 𝑝 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑝 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))))
18 simprl2 1219 . . . . . . . . . . . 12 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
1918adantl 482 . . . . . . . . . . 11 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
20 simprlr 778 . . . . . . . . . . 11 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑝𝐴)
2117, 19, 20rspcdva 3613 . . . . . . . . . 10 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (¬ 𝑝 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)))
22 simpl 483 . . . . . . . . . . . . 13 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝐴 No )
2322, 9sseldd 3982 . . . . . . . . . . . 12 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑢 No )
2422, 20sseldd 3982 . . . . . . . . . . . 12 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑝 No )
25 sltso 27168 . . . . . . . . . . . . 13 <s Or No
26 soasym 5618 . . . . . . . . . . . . 13 (( <s Or No ∧ (𝑢 No 𝑝 No )) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
2725, 26mpan 688 . . . . . . . . . . . 12 ((𝑢 No 𝑝 No ) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
2823, 24, 27syl2anc 584 . . . . . . . . . . 11 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
29 pm4.62 854 . . . . . . . . . . 11 ((𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢) ↔ (¬ 𝑢 <s 𝑝 ∨ ¬ 𝑝 <s 𝑢))
3028, 29sylib 217 . . . . . . . . . 10 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (¬ 𝑢 <s 𝑝 ∨ ¬ 𝑝 <s 𝑢))
3112, 21, 30mpjaod 858 . . . . . . . . 9 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
3231fveq1d 6890 . . . . . . . 8 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = ((𝑝 ↾ suc 𝐺)‘𝐺))
33 simprl1 1218 . . . . . . . . . . 11 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝐺 ∈ dom 𝑢)
3433adantl 482 . . . . . . . . . 10 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝐺 ∈ dom 𝑢)
35 sucidg 6442 . . . . . . . . . 10 (𝐺 ∈ dom 𝑢𝐺 ∈ suc 𝐺)
3634, 35syl 17 . . . . . . . . 9 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝐺 ∈ suc 𝐺)
3736fvresd 6908 . . . . . . . 8 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = (𝑢𝐺))
3836fvresd 6908 . . . . . . . 8 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ((𝑝 ↾ suc 𝐺)‘𝐺) = (𝑝𝐺))
3932, 37, 383eqtr3d 2780 . . . . . . 7 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑢𝐺) = (𝑝𝐺))
40 simprl3 1220 . . . . . . . 8 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑢𝐺) = 𝑥)
4140adantl 482 . . . . . . 7 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑢𝐺) = 𝑥)
42 simprr3 1223 . . . . . . . 8 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑝𝐺) = 𝑦)
4342adantl 482 . . . . . . 7 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑝𝐺) = 𝑦)
4439, 41, 433eqtr3d 2780 . . . . . 6 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑥 = 𝑦)
4544expr 457 . . . . 5 ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) → (((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
4645rexlimdvva 3211 . . . 4 (𝐴 No → (∃𝑢𝐴𝑝𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
471, 46biimtrrid 242 . . 3 (𝐴 No → ((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
4847alrimivv 1931 . 2 (𝐴 No → ∀𝑥𝑦((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
49 eqeq2 2744 . . . . . 6 (𝑥 = 𝑦 → ((𝑢𝐺) = 𝑥 ↔ (𝑢𝐺) = 𝑦))
50493anbi3d 1442 . . . . 5 (𝑥 = 𝑦 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦)))
5150rexbidv 3178 . . . 4 (𝑥 = 𝑦 → (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦)))
52 dmeq 5901 . . . . . . 7 (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝)
5352eleq2d 2819 . . . . . 6 (𝑢 = 𝑝 → (𝐺 ∈ dom 𝑢𝐺 ∈ dom 𝑝))
54 breq2 5151 . . . . . . . . 9 (𝑢 = 𝑝 → (𝑣 <s 𝑢𝑣 <s 𝑝))
5554notbid 317 . . . . . . . 8 (𝑢 = 𝑝 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝))
56 reseq1 5973 . . . . . . . . 9 (𝑢 = 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
5756eqeq1d 2734 . . . . . . . 8 (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
5855, 57imbi12d 344 . . . . . . 7 (𝑢 = 𝑝 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
5958ralbidv 3177 . . . . . 6 (𝑢 = 𝑝 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
60 fveq1 6887 . . . . . . 7 (𝑢 = 𝑝 → (𝑢𝐺) = (𝑝𝐺))
6160eqeq1d 2734 . . . . . 6 (𝑢 = 𝑝 → ((𝑢𝐺) = 𝑦 ↔ (𝑝𝐺) = 𝑦))
6253, 59, 613anbi123d 1436 . . . . 5 (𝑢 = 𝑝 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦) ↔ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
6362cbvrexvw 3235 . . . 4 (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦) ↔ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))
6451, 63bitrdi 286 . . 3 (𝑥 = 𝑦 → (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
6564mo4 2560 . 2 (∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∀𝑥𝑦((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
6648, 65sylibr 233 1 (𝐴 No → ∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087  wal 1539   = wceq 1541  wcel 2106  ∃*wmo 2532  wral 3061  wrex 3070  wss 3947   class class class wbr 5147   Or wor 5586  dom cdm 5675  cres 5677  suc csuc 6363  cfv 6540   No csur 27132   <s cslt 27133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-1o 8462  df-2o 8463  df-no 27135  df-slt 27136
This theorem is referenced by:  nosupno  27195  nosupfv  27198
  Copyright terms: Public domain W3C validator