MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupprefixmo Structured version   Visualization version   GIF version

Theorem nosupprefixmo 27669
Description: In any class of surreals, there is at most one value of the prefix property. (Contributed by Scott Fenton, 26-Nov-2021.)
Assertion
Ref Expression
nosupprefixmo (𝐴 No → ∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥   𝑢,𝐺,𝑣,𝑥

Proof of Theorem nosupprefixmo
Dummy variables 𝑦 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3217 . . . 4 (∃𝑢𝐴𝑝𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) ↔ (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
2 breq1 5127 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑣 <s 𝑝𝑢 <s 𝑝))
32notbid 318 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → (¬ 𝑣 <s 𝑝 ↔ ¬ 𝑢 <s 𝑝))
4 reseq1 5965 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑣 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺))
54eqeq2d 2747 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → ((𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺)))
63, 5imbi12d 344 . . . . . . . . . . . 12 (𝑣 = 𝑢 → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑢 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺))))
7 simprr2 1223 . . . . . . . . . . . . 13 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
87adantl 481 . . . . . . . . . . . 12 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
9 simprll 778 . . . . . . . . . . . 12 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑢𝐴)
106, 8, 9rspcdva 3607 . . . . . . . . . . 11 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (¬ 𝑢 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺)))
11 eqcom 2743 . . . . . . . . . . 11 ((𝑝 ↾ suc 𝐺) = (𝑢 ↾ suc 𝐺) ↔ (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
1210, 11imbitrdi 251 . . . . . . . . . 10 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (¬ 𝑢 <s 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)))
13 breq1 5127 . . . . . . . . . . . . 13 (𝑣 = 𝑝 → (𝑣 <s 𝑢𝑝 <s 𝑢))
1413notbid 318 . . . . . . . . . . . 12 (𝑣 = 𝑝 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑝 <s 𝑢))
15 reseq1 5965 . . . . . . . . . . . . 13 (𝑣 = 𝑝 → (𝑣 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
1615eqeq2d 2747 . . . . . . . . . . . 12 (𝑣 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)))
1714, 16imbi12d 344 . . . . . . . . . . 11 (𝑣 = 𝑝 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑝 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))))
18 simprl2 1220 . . . . . . . . . . . 12 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
1918adantl 481 . . . . . . . . . . 11 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
20 simprlr 779 . . . . . . . . . . 11 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑝𝐴)
2117, 19, 20rspcdva 3607 . . . . . . . . . 10 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (¬ 𝑝 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺)))
22 simpl 482 . . . . . . . . . . . . 13 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝐴 No )
2322, 9sseldd 3964 . . . . . . . . . . . 12 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑢 No )
2422, 20sseldd 3964 . . . . . . . . . . . 12 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑝 No )
25 sltso 27645 . . . . . . . . . . . . 13 <s Or No
26 soasym 5599 . . . . . . . . . . . . 13 (( <s Or No ∧ (𝑢 No 𝑝 No )) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
2725, 26mpan 690 . . . . . . . . . . . 12 ((𝑢 No 𝑝 No ) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
2823, 24, 27syl2anc 584 . . . . . . . . . . 11 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢))
29 pm4.62 856 . . . . . . . . . . 11 ((𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢) ↔ (¬ 𝑢 <s 𝑝 ∨ ¬ 𝑝 <s 𝑢))
3028, 29sylib 218 . . . . . . . . . 10 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (¬ 𝑢 <s 𝑝 ∨ ¬ 𝑝 <s 𝑢))
3112, 21, 30mpjaod 860 . . . . . . . . 9 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
3231fveq1d 6883 . . . . . . . 8 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = ((𝑝 ↾ suc 𝐺)‘𝐺))
33 simprl1 1219 . . . . . . . . . . 11 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → 𝐺 ∈ dom 𝑢)
3433adantl 481 . . . . . . . . . 10 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝐺 ∈ dom 𝑢)
35 sucidg 6440 . . . . . . . . . 10 (𝐺 ∈ dom 𝑢𝐺 ∈ suc 𝐺)
3634, 35syl 17 . . . . . . . . 9 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝐺 ∈ suc 𝐺)
3736fvresd 6901 . . . . . . . 8 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ((𝑢 ↾ suc 𝐺)‘𝐺) = (𝑢𝐺))
3836fvresd 6901 . . . . . . . 8 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → ((𝑝 ↾ suc 𝐺)‘𝐺) = (𝑝𝐺))
3932, 37, 383eqtr3d 2779 . . . . . . 7 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑢𝐺) = (𝑝𝐺))
40 simprl3 1221 . . . . . . . 8 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑢𝐺) = 𝑥)
4140adantl 481 . . . . . . 7 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑢𝐺) = 𝑥)
42 simprr3 1224 . . . . . . . 8 (((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))) → (𝑝𝐺) = 𝑦)
4342adantl 481 . . . . . . 7 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → (𝑝𝐺) = 𝑦)
4439, 41, 433eqtr3d 2779 . . . . . 6 ((𝐴 No ∧ ((𝑢𝐴𝑝𝐴) ∧ ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))) → 𝑥 = 𝑦)
4544expr 456 . . . . 5 ((𝐴 No ∧ (𝑢𝐴𝑝𝐴)) → (((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
4645rexlimdvva 3202 . . . 4 (𝐴 No → (∃𝑢𝐴𝑝𝐴 ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
471, 46biimtrrid 243 . . 3 (𝐴 No → ((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
4847alrimivv 1928 . 2 (𝐴 No → ∀𝑥𝑦((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
49 eqeq2 2748 . . . . . 6 (𝑥 = 𝑦 → ((𝑢𝐺) = 𝑥 ↔ (𝑢𝐺) = 𝑦))
50493anbi3d 1444 . . . . 5 (𝑥 = 𝑦 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦)))
5150rexbidv 3165 . . . 4 (𝑥 = 𝑦 → (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦)))
52 dmeq 5888 . . . . . . 7 (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝)
5352eleq2d 2821 . . . . . 6 (𝑢 = 𝑝 → (𝐺 ∈ dom 𝑢𝐺 ∈ dom 𝑝))
54 breq2 5128 . . . . . . . . 9 (𝑢 = 𝑝 → (𝑣 <s 𝑢𝑣 <s 𝑝))
5554notbid 318 . . . . . . . 8 (𝑢 = 𝑝 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝))
56 reseq1 5965 . . . . . . . . 9 (𝑢 = 𝑝 → (𝑢 ↾ suc 𝐺) = (𝑝 ↾ suc 𝐺))
5756eqeq1d 2738 . . . . . . . 8 (𝑢 = 𝑝 → ((𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺) ↔ (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)))
5855, 57imbi12d 344 . . . . . . 7 (𝑢 = 𝑝 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
5958ralbidv 3164 . . . . . 6 (𝑢 = 𝑝 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ↔ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺))))
60 fveq1 6880 . . . . . . 7 (𝑢 = 𝑝 → (𝑢𝐺) = (𝑝𝐺))
6160eqeq1d 2738 . . . . . 6 (𝑢 = 𝑝 → ((𝑢𝐺) = 𝑦 ↔ (𝑝𝐺) = 𝑦))
6253, 59, 613anbi123d 1438 . . . . 5 (𝑢 = 𝑝 → ((𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦) ↔ (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
6362cbvrexvw 3225 . . . 4 (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑦) ↔ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦))
6451, 63bitrdi 287 . . 3 (𝑥 = 𝑦 → (∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)))
6564mo4 2566 . 2 (∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ↔ ∀𝑥𝑦((∃𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥) ∧ ∃𝑝𝐴 (𝐺 ∈ dom 𝑝 ∧ ∀𝑣𝐴𝑣 <s 𝑝 → (𝑝 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑝𝐺) = 𝑦)) → 𝑥 = 𝑦))
6648, 65sylibr 234 1 (𝐴 No → ∃*𝑥𝑢𝐴 (𝐺 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝐺) = (𝑣 ↾ suc 𝐺)) ∧ (𝑢𝐺) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2538  wral 3052  wrex 3061  wss 3931   class class class wbr 5124   Or wor 5565  dom cdm 5659  cres 5661  suc csuc 6359  cfv 6536   No csur 27608   <s cslt 27609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612
This theorem is referenced by:  nosupno  27672  nosupfv  27675
  Copyright terms: Public domain W3C validator