Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsyl5 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024.) |
Ref | Expression |
---|---|
nsyl4.1 | ⊢ (𝜑 → 𝜓) |
nsyl4.2 | ⊢ (¬ 𝜑 → 𝜒) |
Ref | Expression |
---|---|
nsyl5 | ⊢ (¬ 𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | nsyl4.2 | . . 3 ⊢ (¬ 𝜑 → 𝜒) | |
3 | 1, 2 | nsyl4 158 | . 2 ⊢ (¬ 𝜒 → 𝜓) |
4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm5.55 946 euor2 2615 moanimlem 2620 moexexlem 2628 eueq3 3646 opprc1 4828 opprc2 4829 mosubopt 5424 nfvres 6810 fvco4i 6869 fvmptex 6889 fvopab4ndm 6904 ressnop0 7025 csbriota 7248 ovprc 7313 ovprc1 7314 ovprc2 7315 ndmovass 7460 ndmovdistr 7461 extmptsuppeq 8004 funsssuppss 8006 eceqoveq 8611 supval2 9214 axpowndlem3 10355 adderpq 10712 mulerpq 10713 fzoval 13388 swrdnznd 14355 pfxnd0 14401 grpidval 18345 tgdif0 22142 resstopn 22337 rdgprc0 33769 bj-projval 35186 wl-nax6im 35677 itg2addnclem3 35830 or3or 41631 ndmafv 44632 nfunsnafv 44634 afvnufveq 44639 aovprc 44680 ndmaovass 44698 ndmaovdistr 44699 tz6.12-2-afv2 44729 naryfval 45974 naryfvalixp 45975 |
Copyright terms: Public domain | W3C validator |