| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl5 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024.) |
| Ref | Expression |
|---|---|
| nsyl4.1 | ⊢ (𝜑 → 𝜓) |
| nsyl4.2 | ⊢ (¬ 𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| nsyl5 | ⊢ (¬ 𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | nsyl4.2 | . . 3 ⊢ (¬ 𝜑 → 𝜒) | |
| 3 | 1, 2 | nsyl4 158 | . 2 ⊢ (¬ 𝜒 → 𝜓) |
| 4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm5.55 950 euor2 2606 moanimlem 2611 moexexlem 2619 eueq3 3682 opprc1 4861 opprc2 4862 mosubopt 5470 nfvres 6899 fvco4i 6962 fvmptex 6982 fvopab4ndm 6998 ressnop0 7125 csbriota 7359 ovprc 7425 ovprc1 7426 ovprc2 7427 ndmovass 7577 ndmovdistr 7578 extmptsuppeq 8167 funsssuppss 8169 eceqoveq 8795 supval2 9406 axpowndlem3 10552 adderpq 10909 mulerpq 10910 fzoval 13621 swrdnznd 14607 pfxnd0 14653 grpidval 18588 tgdif0 22879 resstopn 23073 prcinf 35084 rdgprc0 35781 bj-projval 36984 wl-nax6im 37506 itg2addnclem3 37667 or3or 44012 ndmafv 47141 nfunsnafv 47143 afvnufveq 47148 aovprc 47189 ndmaovass 47207 ndmaovdistr 47208 tz6.12-2-afv2 47238 naryfval 48617 naryfvalixp 48618 |
| Copyright terms: Public domain | W3C validator |