| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl5 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024.) |
| Ref | Expression |
|---|---|
| nsyl4.1 | ⊢ (𝜑 → 𝜓) |
| nsyl4.2 | ⊢ (¬ 𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| nsyl5 | ⊢ (¬ 𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | nsyl4.2 | . . 3 ⊢ (¬ 𝜑 → 𝜒) | |
| 3 | 1, 2 | nsyl4 158 | . 2 ⊢ (¬ 𝜒 → 𝜓) |
| 4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm5.55 950 euor2 2612 moanimlem 2617 moexexlem 2625 eueq3 3694 opprc1 4873 opprc2 4874 mosubopt 5485 nfvres 6917 fvco4i 6980 fvmptex 7000 fvopab4ndm 7016 ressnop0 7143 csbriota 7377 ovprc 7443 ovprc1 7444 ovprc2 7445 ndmovass 7595 ndmovdistr 7596 extmptsuppeq 8187 funsssuppss 8189 eceqoveq 8836 supval2 9467 axpowndlem3 10613 adderpq 10970 mulerpq 10971 fzoval 13677 swrdnznd 14660 pfxnd0 14706 grpidval 18639 tgdif0 22930 resstopn 23124 prcinf 35125 rdgprc0 35811 bj-projval 37014 wl-nax6im 37536 itg2addnclem3 37697 or3or 44047 ndmafv 47169 nfunsnafv 47171 afvnufveq 47176 aovprc 47217 ndmaovass 47235 ndmaovdistr 47236 tz6.12-2-afv2 47266 naryfval 48608 naryfvalixp 48609 |
| Copyright terms: Public domain | W3C validator |