| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl5 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024.) |
| Ref | Expression |
|---|---|
| nsyl4.1 | ⊢ (𝜑 → 𝜓) |
| nsyl4.2 | ⊢ (¬ 𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| nsyl5 | ⊢ (¬ 𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | nsyl4.2 | . . 3 ⊢ (¬ 𝜑 → 𝜒) | |
| 3 | 1, 2 | nsyl4 158 | . 2 ⊢ (¬ 𝜒 → 𝜓) |
| 4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm5.55 950 euor2 2606 moanimlem 2611 moexexlem 2619 eueq3 3679 opprc1 4857 opprc2 4858 mosubopt 5465 nfvres 6881 fvco4i 6944 fvmptex 6964 fvopab4ndm 6980 ressnop0 7107 csbriota 7341 ovprc 7407 ovprc1 7408 ovprc2 7409 ndmovass 7557 ndmovdistr 7558 extmptsuppeq 8144 funsssuppss 8146 eceqoveq 8772 supval2 9382 axpowndlem3 10528 adderpq 10885 mulerpq 10886 fzoval 13597 swrdnznd 14583 pfxnd0 14629 grpidval 18570 tgdif0 22912 resstopn 23106 prcinf 35077 rdgprc0 35774 bj-projval 36977 wl-nax6im 37499 itg2addnclem3 37660 or3or 44005 ndmafv 47134 nfunsnafv 47136 afvnufveq 47141 aovprc 47182 ndmaovass 47200 ndmaovdistr 47201 tz6.12-2-afv2 47231 naryfval 48610 naryfvalixp 48611 |
| Copyright terms: Public domain | W3C validator |