| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl5 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024.) |
| Ref | Expression |
|---|---|
| nsyl4.1 | ⊢ (𝜑 → 𝜓) |
| nsyl4.2 | ⊢ (¬ 𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| nsyl5 | ⊢ (¬ 𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | nsyl4.2 | . . 3 ⊢ (¬ 𝜑 → 𝜒) | |
| 3 | 1, 2 | nsyl4 158 | . 2 ⊢ (¬ 𝜒 → 𝜓) |
| 4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm5.55 950 euor2 2606 moanimlem 2611 moexexlem 2619 eueq3 3671 opprc1 4848 opprc2 4849 mosubopt 5453 nfvres 6861 fvco4i 6924 fvmptex 6944 fvopab4ndm 6960 ressnop0 7087 csbriota 7321 ovprc 7387 ovprc1 7388 ovprc2 7389 ndmovass 7537 ndmovdistr 7538 extmptsuppeq 8121 funsssuppss 8123 eceqoveq 8749 supval2 9345 axpowndlem3 10493 adderpq 10850 mulerpq 10851 fzoval 13563 swrdnznd 14549 pfxnd0 14595 grpidval 18535 tgdif0 22877 resstopn 23071 prcinf 35075 fineqvnttrclselem1 35080 rdgprc0 35777 bj-projval 36980 wl-nax6im 37502 itg2addnclem3 37663 or3or 44006 ndmafv 47134 nfunsnafv 47136 afvnufveq 47141 aovprc 47182 ndmaovass 47200 ndmaovdistr 47201 tz6.12-2-afv2 47231 naryfval 48623 naryfvalixp 48624 |
| Copyright terms: Public domain | W3C validator |