| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl5 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024.) |
| Ref | Expression |
|---|---|
| nsyl4.1 | ⊢ (𝜑 → 𝜓) |
| nsyl4.2 | ⊢ (¬ 𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| nsyl5 | ⊢ (¬ 𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | nsyl4.2 | . . 3 ⊢ (¬ 𝜑 → 𝜒) | |
| 3 | 1, 2 | nsyl4 158 | . 2 ⊢ (¬ 𝜒 → 𝜓) |
| 4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm5.55 950 euor2 2608 moanimlem 2613 moexexlem 2621 eueq3 3665 opprc1 4846 opprc2 4847 mosubopt 5448 tz6.12-2 6809 nfvres 6860 fvco4i 6923 fvmptex 6943 fvopab4ndm 6959 ressnop0 7086 csbriota 7318 ovprc 7384 ovprc1 7385 ovprc2 7386 ndmovass 7534 ndmovdistr 7535 extmptsuppeq 8118 funsssuppss 8120 eceqoveq 8746 supval2 9339 axpowndlem3 10490 adderpq 10847 mulerpq 10848 fzoval 13560 swrdnznd 14550 pfxnd0 14596 grpidval 18569 tgdif0 22907 resstopn 23101 prcinf 35136 fineqvnttrclselem1 35141 rdgprc0 35835 bj-projval 37040 wl-nax6im 37562 itg2addnclem3 37723 or3or 44126 ndmafv 47250 nfunsnafv 47252 afvnufveq 47257 aovprc 47298 ndmaovass 47316 ndmaovdistr 47317 tz6.12-2-afv2 47347 naryfval 48739 naryfvalixp 48740 |
| Copyright terms: Public domain | W3C validator |