Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsyl5 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024.) |
Ref | Expression |
---|---|
nsyl4.1 | ⊢ (𝜑 → 𝜓) |
nsyl4.2 | ⊢ (¬ 𝜑 → 𝜒) |
Ref | Expression |
---|---|
nsyl5 | ⊢ (¬ 𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | nsyl4.2 | . . 3 ⊢ (¬ 𝜑 → 𝜒) | |
3 | 1, 2 | nsyl4 158 | . 2 ⊢ (¬ 𝜒 → 𝜓) |
4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm5.55 945 euor2 2615 moanimlem 2620 moexexlem 2628 eueq3 3641 opprc1 4825 opprc2 4826 mosubopt 5418 nfvres 6792 fvco4i 6851 fvmptex 6871 fvopab4ndm 6886 ressnop0 7007 csbriota 7228 ovprc 7293 ovprc1 7294 ovprc2 7295 ndmovass 7438 ndmovdistr 7439 extmptsuppeq 7975 funsssuppss 7977 eceqoveq 8569 supval2 9144 axpowndlem3 10286 adderpq 10643 mulerpq 10644 fzoval 13317 swrdnznd 14283 pfxnd0 14329 grpidval 18260 tgdif0 22050 resstopn 22245 rdgprc0 33675 bj-projval 35113 wl-nax6im 35604 itg2addnclem3 35757 or3or 41520 ndmafv 44519 nfunsnafv 44521 afvnufveq 44526 aovprc 44567 ndmaovass 44585 ndmaovdistr 44586 tz6.12-2-afv2 44616 naryfval 45862 naryfvalixp 45863 |
Copyright terms: Public domain | W3C validator |