![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsyl5 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024.) |
Ref | Expression |
---|---|
nsyl4.1 | ⊢ (𝜑 → 𝜓) |
nsyl4.2 | ⊢ (¬ 𝜑 → 𝜒) |
Ref | Expression |
---|---|
nsyl5 | ⊢ (¬ 𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | nsyl4.2 | . . 3 ⊢ (¬ 𝜑 → 𝜒) | |
3 | 1, 2 | nsyl4 158 | . 2 ⊢ (¬ 𝜒 → 𝜓) |
4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm5.55 950 euor2 2610 moanimlem 2615 moexexlem 2623 eueq3 3719 opprc1 4901 opprc2 4902 mosubopt 5519 nfvres 6947 fvco4i 7009 fvmptex 7029 fvopab4ndm 7045 ressnop0 7172 csbriota 7402 ovprc 7468 ovprc1 7469 ovprc2 7470 ndmovass 7620 ndmovdistr 7621 extmptsuppeq 8211 funsssuppss 8213 eceqoveq 8860 supval2 9492 axpowndlem3 10636 adderpq 10993 mulerpq 10994 fzoval 13696 swrdnznd 14676 pfxnd0 14722 grpidval 18686 tgdif0 23014 resstopn 23209 prcinf 35086 rdgprc0 35774 bj-projval 36978 wl-nax6im 37498 itg2addnclem3 37659 or3or 44012 ndmafv 47089 nfunsnafv 47091 afvnufveq 47096 aovprc 47137 ndmaovass 47155 ndmaovdistr 47156 tz6.12-2-afv2 47186 naryfval 48477 naryfvalixp 48478 |
Copyright terms: Public domain | W3C validator |