| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsyl5 | Structured version Visualization version GIF version | ||
| Description: A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024.) |
| Ref | Expression |
|---|---|
| nsyl4.1 | ⊢ (𝜑 → 𝜓) |
| nsyl4.2 | ⊢ (¬ 𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| nsyl5 | ⊢ (¬ 𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | nsyl4.2 | . . 3 ⊢ (¬ 𝜑 → 𝜒) | |
| 3 | 1, 2 | nsyl4 158 | . 2 ⊢ (¬ 𝜒 → 𝜓) |
| 4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm5.55 950 euor2 2607 moanimlem 2612 moexexlem 2620 eueq3 3685 opprc1 4864 opprc2 4865 mosubopt 5473 nfvres 6902 fvco4i 6965 fvmptex 6985 fvopab4ndm 7001 ressnop0 7128 csbriota 7362 ovprc 7428 ovprc1 7429 ovprc2 7430 ndmovass 7580 ndmovdistr 7581 extmptsuppeq 8170 funsssuppss 8172 eceqoveq 8798 supval2 9413 axpowndlem3 10559 adderpq 10916 mulerpq 10917 fzoval 13628 swrdnznd 14614 pfxnd0 14660 grpidval 18595 tgdif0 22886 resstopn 23080 prcinf 35091 rdgprc0 35788 bj-projval 36991 wl-nax6im 37513 itg2addnclem3 37674 or3or 44019 ndmafv 47145 nfunsnafv 47147 afvnufveq 47152 aovprc 47193 ndmaovass 47211 ndmaovdistr 47212 tz6.12-2-afv2 47242 naryfval 48621 naryfvalixp 48622 |
| Copyright terms: Public domain | W3C validator |