![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsyl5 | Structured version Visualization version GIF version |
Description: A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024.) |
Ref | Expression |
---|---|
nsyl4.1 | ⊢ (𝜑 → 𝜓) |
nsyl4.2 | ⊢ (¬ 𝜑 → 𝜒) |
Ref | Expression |
---|---|
nsyl5 | ⊢ (¬ 𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl4.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | nsyl4.2 | . . 3 ⊢ (¬ 𝜑 → 𝜒) | |
3 | 1, 2 | nsyl4 158 | . 2 ⊢ (¬ 𝜒 → 𝜓) |
4 | 3 | con1i 147 | 1 ⊢ (¬ 𝜓 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm5.55 949 euor2 2616 moanimlem 2621 moexexlem 2629 eueq3 3733 opprc1 4921 opprc2 4922 mosubopt 5529 nfvres 6961 fvco4i 7023 fvmptex 7043 fvopab4ndm 7059 ressnop0 7187 csbriota 7420 ovprc 7486 ovprc1 7487 ovprc2 7488 ndmovass 7638 ndmovdistr 7639 extmptsuppeq 8229 funsssuppss 8231 eceqoveq 8880 supval2 9524 axpowndlem3 10668 adderpq 11025 mulerpq 11026 fzoval 13717 swrdnznd 14690 pfxnd0 14736 grpidval 18699 tgdif0 23020 resstopn 23215 prcinf 35070 rdgprc0 35757 bj-projval 36962 wl-nax6im 37472 itg2addnclem3 37633 or3or 43985 ndmafv 47055 nfunsnafv 47057 afvnufveq 47062 aovprc 47103 ndmaovass 47121 ndmaovdistr 47122 tz6.12-2-afv2 47152 naryfval 48362 naryfvalixp 48363 |
Copyright terms: Public domain | W3C validator |