MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.21t Structured version   Visualization version   GIF version

Theorem r19.21t 3259
Description: Restricted quantifier version of 19.21t 2207; closed form of r19.21 3260. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Wolf Lammen, 2-Jan-2020.)
Assertion
Ref Expression
r19.21t (Ⅎ𝑥𝜑 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓)))

Proof of Theorem r19.21t
StepHypRef Expression
1 19.21t 2207 . 2 (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → (𝑥𝐴𝜓)) ↔ (𝜑 → ∀𝑥(𝑥𝐴𝜓))))
2 df-ral 3068 . . 3 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
3 bi2.04 387 . . . 4 ((𝑥𝐴 → (𝜑𝜓)) ↔ (𝜑 → (𝑥𝐴𝜓)))
43albii 1817 . . 3 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ ∀𝑥(𝜑 → (𝑥𝐴𝜓)))
52, 4bitri 275 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝜑 → (𝑥𝐴𝜓)))
6 df-ral 3068 . . 3 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
76imbi2i 336 . 2 ((𝜑 → ∀𝑥𝐴 𝜓) ↔ (𝜑 → ∀𝑥(𝑥𝐴𝜓)))
81, 5, 73bitr4g 314 1 (Ⅎ𝑥𝜑 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wnf 1781  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-nf 1782  df-ral 3068
This theorem is referenced by:  r19.21  3260
  Copyright terms: Public domain W3C validator