| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21t | Structured version Visualization version GIF version | ||
| Description: Closed form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2212. (Contributed by NM, 27-May-1997.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 3-Jan-2018.) df-nf 1785 changed. (Revised by Wolf Lammen, 11-Sep-2021.) (Proof shortened by BJ, 3-Nov-2021.) |
| Ref | Expression |
|---|---|
| 19.21t | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.38a 1841 | . 2 ⊢ (Ⅎ𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) | |
| 2 | 19.9t 2209 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
| 3 | 2 | imbi1d 341 | . 2 ⊢ (Ⅎ𝑥𝜑 → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
| 4 | 1, 3 | bitr3d 281 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: 19.21 2212 sbal1 2530 sbal2 2531 r19.21t 3227 ceqsal1t 3470 sbciegftOLD 3775 bj-ceqsalt0 37001 bj-ceqsalt1 37002 wl-sbhbt 37671 wl-2sb6d 37675 wl-sbalnae 37679 ax12indalem 39117 ax12inda2ALT 39118 |
| Copyright terms: Public domain | W3C validator |