MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.21 Structured version   Visualization version   GIF version

Theorem r19.21 3138
Description: Restricted quantifier version of 19.21 2203. (Contributed by Scott Fenton, 30-Mar-2011.)
Hypothesis
Ref Expression
r19.21.1 𝑥𝜑
Assertion
Ref Expression
r19.21 (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))

Proof of Theorem r19.21
StepHypRef Expression
1 r19.21.1 . 2 𝑥𝜑
2 r19.21t 3137 . 2 (Ⅎ𝑥𝜑 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓)))
31, 2ax-mp 5 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1787  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788  df-ral 3068
This theorem is referenced by:  rmo3f  3664  ra4  3815  rmoanim  3823  rmoanimALT  3824  r19.32  44477
  Copyright terms: Public domain W3C validator