| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29d2rOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of r19.29d2r 3140 as of 4-Nov-2024. (Contributed by Thierry Arnoux, 30-Jan-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| r19.29d2r.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| r19.29d2r.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
| Ref | Expression |
|---|---|
| r19.29d2rOLD | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29d2r.1 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | |
| 2 | r19.29d2r.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) | |
| 3 | r19.29 3114 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑦 ∈ 𝐵 𝜒)) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑦 ∈ 𝐵 𝜒)) |
| 5 | r19.29 3114 | . . 3 ⊢ ((∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑦 ∈ 𝐵 𝜒) → ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) | |
| 6 | 5 | reximi 3084 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑦 ∈ 𝐵 𝜒) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) |
| 7 | 4, 6 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3061 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3062 df-rex 3071 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |