Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r2allem | Structured version Visualization version GIF version |
Description: Lemma factoring out common proof steps of r2alf 3145 and r2al 3124. Introduced to reduce dependencies on axioms. (Contributed by Wolf Lammen, 9-Jan-2020.) |
Ref | Expression |
---|---|
r2allem.1 | ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) |
Ref | Expression |
---|---|
r2allem | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) | |
2 | r2allem.1 | . . . 4 ⊢ (∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) | |
3 | impexp 450 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑))) | |
4 | 3 | albii 1823 | . . . 4 ⊢ (∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜑))) |
5 | df-ral 3068 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝜑)) | |
6 | 5 | imbi2i 335 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜑))) |
7 | 2, 4, 6 | 3bitr4i 302 | . . 3 ⊢ (∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) |
8 | 7 | albii 1823 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑)) |
9 | 1, 8 | bitr4i 277 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3068 |
This theorem is referenced by: r2al 3124 r2alf 3145 |
Copyright terms: Public domain | W3C validator |