![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.29 1976. See also r19.29r 3283. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 463 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | 1 | ralimi 3161 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → (𝜑 ∧ 𝜓))) |
3 | rexim 3216 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → (𝜑 ∧ 𝜓)) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
5 | 4 | imp 397 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∀wral 3117 ∃wrex 3118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1879 df-ral 3122 df-rex 3123 |
This theorem is referenced by: r19.29r 3283 2r19.29 3289 r19.29d2r 3290 disjiun 4863 triun 4990 ralxfrd 5110 ralxfrd2 5114 elrnmptg 5612 fmpt 6634 fliftfun 6822 fun11iun 7393 omabs 7999 findcard3 8478 r1sdom 8921 tcrank 9031 infxpenlem 9156 dfac12k 9291 cfslb2n 9412 cfcoflem 9416 iundom2g 9684 supsrlem 10255 axpre-sup 10313 fimaxre3 11307 limsupbnd2 14598 rlimuni 14665 rlimcld2 14693 rlimno1 14768 pgpfac1lem5 18839 ppttop 21189 epttop 21191 tgcnp 21435 lmcnp 21486 bwth 21591 1stcrest 21634 txlm 21829 tx1stc 21831 fbfinnfr 22022 fbunfip 22050 filuni 22066 ufileu 22100 fbflim2 22158 flftg 22177 ufilcmp 22213 cnpfcf 22222 tsmsxp 22335 metss 22690 lmmbr 23433 ivthlem2 23625 ivthlem3 23626 dyadmax 23771 rhmdvdsr 30359 tpr2rico 30499 esumpcvgval 30681 sigaclcuni 30722 voliune 30833 volfiniune 30834 dya2icoseg2 30881 poimirlem29 33977 unirep 34045 heibor1lem 34145 pmapglbx 35839 stoweidlem35 41040 |
Copyright terms: Public domain | W3C validator |