| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.29 1874. See also r19.29r 3096. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | ralrexbid 3089 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 3 | 2 | biimpa 476 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: 2r19.29 3118 disjiun 5077 triun 5210 ralxfrd 5344 ralxfrd2 5348 elrnmptg 5900 fmpt 7043 fliftfun 7246 fiunlem 7874 fiun 7875 f1iun 7876 omabs 8566 findcard3 9167 r1sdom 9667 tcrank 9777 infxpenlem 9904 dfac12k 10039 cfslb2n 10159 cfcoflem 10163 iundom2g 10431 supsrlem 11002 axpre-sup 11060 fimaxre3 12068 hashgt23el 14331 limsupbnd2 15390 rlimuni 15457 rlimcld2 15485 rlimno1 15561 pgpfac1lem5 19993 rhmdvdsr 20423 ppttop 22922 epttop 22924 tgcnp 23168 lmcnp 23219 bwth 23325 1stcrest 23368 txlm 23563 tx1stc 23565 fbfinnfr 23756 fbunfip 23784 filuni 23800 ufileu 23834 fbflim2 23892 flftg 23911 ufilcmp 23947 cnpfcf 23956 tsmsxp 24070 metss 24423 lmmbr 25185 ivthlem2 25380 ivthlem3 25381 dyadmax 25526 tpr2rico 33925 esumpcvgval 34091 sigaclcuni 34131 voliune 34242 volfiniune 34243 dya2icoseg2 34291 onvf1odlem1 35147 umgr2cycllem 35184 umgr2cycl 35185 poimirlem29 37697 unirep 37762 heibor1lem 37857 pmapglbx 39816 stoweidlem35 46081 |
| Copyright terms: Public domain | W3C validator |