| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.29 1873. See also r19.29r 3104. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | ralrexbid 3095 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 3 | 2 | biimpa 476 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: r19.29rOLD 3105 2r19.29 3127 disjiun 5112 triun 5249 ralxfrd 5383 ralxfrd2 5387 elrnmptg 5946 fmpt 7105 fliftfun 7310 fiunlem 7945 fiun 7946 f1iun 7947 omabs 8668 findcard3 9295 findcard3OLD 9296 r1sdom 9793 tcrank 9903 infxpenlem 10032 dfac12k 10167 cfslb2n 10287 cfcoflem 10291 iundom2g 10559 supsrlem 11130 axpre-sup 11188 fimaxre3 12193 hashgt23el 14447 limsupbnd2 15504 rlimuni 15571 rlimcld2 15599 rlimno1 15675 pgpfac1lem5 20067 rhmdvdsr 20473 ppttop 22950 epttop 22952 tgcnp 23196 lmcnp 23247 bwth 23353 1stcrest 23396 txlm 23591 tx1stc 23593 fbfinnfr 23784 fbunfip 23812 filuni 23828 ufileu 23862 fbflim2 23920 flftg 23939 ufilcmp 23975 cnpfcf 23984 tsmsxp 24098 metss 24452 lmmbr 25215 ivthlem2 25410 ivthlem3 25411 dyadmax 25556 tpr2rico 33948 esumpcvgval 34114 sigaclcuni 34154 voliune 34265 volfiniune 34266 dya2icoseg2 34315 umgr2cycllem 35167 umgr2cycl 35168 poimirlem29 37678 unirep 37743 heibor1lem 37838 pmapglbx 39793 stoweidlem35 46044 |
| Copyright terms: Public domain | W3C validator |