| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.29 1873. See also r19.29r 3096. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | ralrexbid 3087 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 3 | 2 | biimpa 476 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: r19.29rOLD 3097 2r19.29 3119 disjiun 5095 triun 5229 ralxfrd 5363 ralxfrd2 5367 elrnmptg 5925 fmpt 7082 fliftfun 7287 fiunlem 7920 fiun 7921 f1iun 7922 omabs 8615 findcard3 9229 findcard3OLD 9230 r1sdom 9727 tcrank 9837 infxpenlem 9966 dfac12k 10101 cfslb2n 10221 cfcoflem 10225 iundom2g 10493 supsrlem 11064 axpre-sup 11122 fimaxre3 12129 hashgt23el 14389 limsupbnd2 15449 rlimuni 15516 rlimcld2 15544 rlimno1 15620 pgpfac1lem5 20011 rhmdvdsr 20417 ppttop 22894 epttop 22896 tgcnp 23140 lmcnp 23191 bwth 23297 1stcrest 23340 txlm 23535 tx1stc 23537 fbfinnfr 23728 fbunfip 23756 filuni 23772 ufileu 23806 fbflim2 23864 flftg 23883 ufilcmp 23919 cnpfcf 23928 tsmsxp 24042 metss 24396 lmmbr 25158 ivthlem2 25353 ivthlem3 25354 dyadmax 25499 tpr2rico 33902 esumpcvgval 34068 sigaclcuni 34108 voliune 34219 volfiniune 34220 dya2icoseg2 34269 onvf1odlem1 35090 umgr2cycllem 35127 umgr2cycl 35128 poimirlem29 37643 unirep 37708 heibor1lem 37803 pmapglbx 39763 stoweidlem35 46033 |
| Copyright terms: Public domain | W3C validator |