Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.29 1876. See also r19.29r 3185. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 470 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | 1 | ralimi 3087 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → (𝜑 ∧ 𝜓))) |
3 | rexim 3172 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → (𝜑 ∧ 𝜓)) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
5 | 4 | imp 407 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3069 df-rex 3070 |
This theorem is referenced by: r19.29r 3185 2r19.29 3263 r19.29d2rOLD 3265 disjiun 5061 triun 5204 ralxfrd 5331 ralxfrd2 5335 elrnmptg 5868 fmpt 6984 fliftfun 7183 fiunlem 7784 fiun 7785 f1iun 7786 omabs 8481 findcard3 9057 r1sdom 9532 tcrank 9642 infxpenlem 9769 dfac12k 9903 cfslb2n 10024 cfcoflem 10028 iundom2g 10296 supsrlem 10867 axpre-sup 10925 fimaxre3 11921 hashgt23el 14139 limsupbnd2 15192 rlimuni 15259 rlimcld2 15287 rlimno1 15365 pgpfac1lem5 19682 ppttop 22157 epttop 22159 tgcnp 22404 lmcnp 22455 bwth 22561 1stcrest 22604 txlm 22799 tx1stc 22801 fbfinnfr 22992 fbunfip 23020 filuni 23036 ufileu 23070 fbflim2 23128 flftg 23147 ufilcmp 23183 cnpfcf 23192 tsmsxp 23306 metss 23664 lmmbr 24422 ivthlem2 24616 ivthlem3 24617 dyadmax 24762 rhmdvdsr 31517 tpr2rico 31862 esumpcvgval 32046 sigaclcuni 32086 voliune 32197 volfiniune 32198 dya2icoseg2 32245 umgr2cycllem 33102 umgr2cycl 33103 poimirlem29 35806 unirep 35871 heibor1lem 35967 pmapglbx 37783 stoweidlem35 43576 |
Copyright terms: Public domain | W3C validator |