![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.29 1871. See also r19.29r 3114. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
Ref | Expression |
---|---|
r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | ralrexbid 3104 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
3 | 2 | biimpa 476 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wral 3059 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-ral 3060 df-rex 3069 |
This theorem is referenced by: r19.29rOLD 3115 2r19.29 3137 r19.29d2rOLD 3139 disjiun 5136 triun 5280 ralxfrd 5414 ralxfrd2 5418 elrnmptg 5975 fmpt 7130 fliftfun 7332 fiunlem 7965 fiun 7966 f1iun 7967 omabs 8688 findcard3 9316 findcard3OLD 9317 r1sdom 9812 tcrank 9922 infxpenlem 10051 dfac12k 10186 cfslb2n 10306 cfcoflem 10310 iundom2g 10578 supsrlem 11149 axpre-sup 11207 fimaxre3 12212 hashgt23el 14460 limsupbnd2 15516 rlimuni 15583 rlimcld2 15611 rlimno1 15687 pgpfac1lem5 20114 rhmdvdsr 20525 ppttop 23030 epttop 23032 tgcnp 23277 lmcnp 23328 bwth 23434 1stcrest 23477 txlm 23672 tx1stc 23674 fbfinnfr 23865 fbunfip 23893 filuni 23909 ufileu 23943 fbflim2 24001 flftg 24020 ufilcmp 24056 cnpfcf 24065 tsmsxp 24179 metss 24537 lmmbr 25306 ivthlem2 25501 ivthlem3 25502 dyadmax 25647 tpr2rico 33873 esumpcvgval 34059 sigaclcuni 34099 voliune 34210 volfiniune 34211 dya2icoseg2 34260 umgr2cycllem 35125 umgr2cycl 35126 poimirlem29 37636 unirep 37701 heibor1lem 37796 pmapglbx 39752 stoweidlem35 45991 |
Copyright terms: Public domain | W3C validator |