|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.29 1872. See also r19.29r 3115. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) | 
| Ref | Expression | 
|---|---|
| r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | ralrexbid 3105 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) | 
| 3 | 2 | biimpa 476 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3060 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ral 3061 df-rex 3070 | 
| This theorem is referenced by: r19.29rOLD 3116 2r19.29 3138 r19.29d2rOLD 3140 disjiun 5130 triun 5273 ralxfrd 5407 ralxfrd2 5411 elrnmptg 5971 fmpt 7129 fliftfun 7333 fiunlem 7967 fiun 7968 f1iun 7969 omabs 8690 findcard3 9319 findcard3OLD 9320 r1sdom 9815 tcrank 9925 infxpenlem 10054 dfac12k 10189 cfslb2n 10309 cfcoflem 10313 iundom2g 10581 supsrlem 11152 axpre-sup 11210 fimaxre3 12215 hashgt23el 14464 limsupbnd2 15520 rlimuni 15587 rlimcld2 15615 rlimno1 15691 pgpfac1lem5 20100 rhmdvdsr 20509 ppttop 23015 epttop 23017 tgcnp 23262 lmcnp 23313 bwth 23419 1stcrest 23462 txlm 23657 tx1stc 23659 fbfinnfr 23850 fbunfip 23878 filuni 23894 ufileu 23928 fbflim2 23986 flftg 24005 ufilcmp 24041 cnpfcf 24050 tsmsxp 24164 metss 24522 lmmbr 25293 ivthlem2 25488 ivthlem3 25489 dyadmax 25634 tpr2rico 33912 esumpcvgval 34080 sigaclcuni 34120 voliune 34231 volfiniune 34232 dya2icoseg2 34281 umgr2cycllem 35146 umgr2cycl 35147 poimirlem29 37657 unirep 37722 heibor1lem 37817 pmapglbx 39772 stoweidlem35 46055 | 
| Copyright terms: Public domain | W3C validator |