| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.29 1873. See also r19.29r 3096. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | ralrexbid 3087 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 3 | 2 | biimpa 476 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: r19.29rOLD 3097 2r19.29 3119 disjiun 5090 triun 5224 ralxfrd 5358 ralxfrd2 5362 elrnmptg 5914 fmpt 7064 fliftfun 7269 fiunlem 7900 fiun 7901 f1iun 7902 omabs 8592 findcard3 9205 findcard3OLD 9206 r1sdom 9703 tcrank 9813 infxpenlem 9942 dfac12k 10077 cfslb2n 10197 cfcoflem 10201 iundom2g 10469 supsrlem 11040 axpre-sup 11098 fimaxre3 12105 hashgt23el 14365 limsupbnd2 15425 rlimuni 15492 rlimcld2 15520 rlimno1 15596 pgpfac1lem5 19995 rhmdvdsr 20428 ppttop 22927 epttop 22929 tgcnp 23173 lmcnp 23224 bwth 23330 1stcrest 23373 txlm 23568 tx1stc 23570 fbfinnfr 23761 fbunfip 23789 filuni 23805 ufileu 23839 fbflim2 23897 flftg 23916 ufilcmp 23952 cnpfcf 23961 tsmsxp 24075 metss 24429 lmmbr 25191 ivthlem2 25386 ivthlem3 25387 dyadmax 25532 tpr2rico 33895 esumpcvgval 34061 sigaclcuni 34101 voliune 34212 volfiniune 34213 dya2icoseg2 34262 onvf1odlem1 35083 umgr2cycllem 35120 umgr2cycl 35121 poimirlem29 37636 unirep 37701 heibor1lem 37796 pmapglbx 39756 stoweidlem35 46026 |
| Copyright terms: Public domain | W3C validator |