Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.29 1877. See also r19.29r 3184. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 469 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | 1 | ralimi 3086 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → (𝜑 ∧ 𝜓))) |
3 | rexim 3168 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → (𝜑 ∧ 𝜓)) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
5 | 4 | imp 406 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: r19.29r 3184 2r19.29 3260 r19.29d2rOLD 3262 disjiun 5057 triun 5200 ralxfrd 5326 ralxfrd2 5330 elrnmptg 5857 fmpt 6966 fliftfun 7163 fiunlem 7758 fiun 7759 f1iun 7760 omabs 8441 findcard3 8987 r1sdom 9463 tcrank 9573 infxpenlem 9700 dfac12k 9834 cfslb2n 9955 cfcoflem 9959 iundom2g 10227 supsrlem 10798 axpre-sup 10856 fimaxre3 11851 hashgt23el 14067 limsupbnd2 15120 rlimuni 15187 rlimcld2 15215 rlimno1 15293 pgpfac1lem5 19597 ppttop 22065 epttop 22067 tgcnp 22312 lmcnp 22363 bwth 22469 1stcrest 22512 txlm 22707 tx1stc 22709 fbfinnfr 22900 fbunfip 22928 filuni 22944 ufileu 22978 fbflim2 23036 flftg 23055 ufilcmp 23091 cnpfcf 23100 tsmsxp 23214 metss 23570 lmmbr 24327 ivthlem2 24521 ivthlem3 24522 dyadmax 24667 rhmdvdsr 31419 tpr2rico 31764 esumpcvgval 31946 sigaclcuni 31986 voliune 32097 volfiniune 32098 dya2icoseg2 32145 umgr2cycllem 33002 umgr2cycl 33003 poimirlem29 35733 unirep 35798 heibor1lem 35894 pmapglbx 37710 stoweidlem35 43466 |
Copyright terms: Public domain | W3C validator |