| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.29 1873. See also r19.29r 3096. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | ralrexbid 3087 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 3 | 2 | biimpa 476 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: r19.29rOLD 3097 2r19.29 3119 disjiun 5090 triun 5224 ralxfrd 5358 ralxfrd2 5362 elrnmptg 5914 fmpt 7064 fliftfun 7269 fiunlem 7900 fiun 7901 f1iun 7902 omabs 8592 findcard3 9205 findcard3OLD 9206 r1sdom 9703 tcrank 9813 infxpenlem 9942 dfac12k 10077 cfslb2n 10197 cfcoflem 10201 iundom2g 10469 supsrlem 11040 axpre-sup 11098 fimaxre3 12105 hashgt23el 14365 limsupbnd2 15425 rlimuni 15492 rlimcld2 15520 rlimno1 15596 pgpfac1lem5 19987 rhmdvdsr 20393 ppttop 22870 epttop 22872 tgcnp 23116 lmcnp 23167 bwth 23273 1stcrest 23316 txlm 23511 tx1stc 23513 fbfinnfr 23704 fbunfip 23732 filuni 23748 ufileu 23782 fbflim2 23840 flftg 23859 ufilcmp 23895 cnpfcf 23904 tsmsxp 24018 metss 24372 lmmbr 25134 ivthlem2 25329 ivthlem3 25330 dyadmax 25475 tpr2rico 33875 esumpcvgval 34041 sigaclcuni 34081 voliune 34192 volfiniune 34193 dya2icoseg2 34242 onvf1odlem1 35063 umgr2cycllem 35100 umgr2cycl 35101 poimirlem29 37616 unirep 37681 heibor1lem 37776 pmapglbx 39736 stoweidlem35 46006 |
| Copyright terms: Public domain | W3C validator |