![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.29 1877. See also r19.29r 3117. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
Ref | Expression |
---|---|
r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 530 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | ralrexbid 3107 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
3 | 2 | biimpa 478 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wral 3062 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-ral 3063 df-rex 3072 |
This theorem is referenced by: r19.29rOLD 3118 2r19.29 3140 r19.29d2rOLD 3142 disjiun 5136 triun 5281 ralxfrd 5407 ralxfrd2 5411 elrnmptg 5959 fmpt 7110 fliftfun 7309 fiunlem 7928 fiun 7929 f1iun 7930 omabs 8650 findcard3 9285 findcard3OLD 9286 r1sdom 9769 tcrank 9879 infxpenlem 10008 dfac12k 10142 cfslb2n 10263 cfcoflem 10267 iundom2g 10535 supsrlem 11106 axpre-sup 11164 fimaxre3 12160 hashgt23el 14384 limsupbnd2 15427 rlimuni 15494 rlimcld2 15522 rlimno1 15600 pgpfac1lem5 19949 rhmdvdsr 20287 ppttop 22510 epttop 22512 tgcnp 22757 lmcnp 22808 bwth 22914 1stcrest 22957 txlm 23152 tx1stc 23154 fbfinnfr 23345 fbunfip 23373 filuni 23389 ufileu 23423 fbflim2 23481 flftg 23500 ufilcmp 23536 cnpfcf 23545 tsmsxp 23659 metss 24017 lmmbr 24775 ivthlem2 24969 ivthlem3 24970 dyadmax 25115 tpr2rico 32892 esumpcvgval 33076 sigaclcuni 33116 voliune 33227 volfiniune 33228 dya2icoseg2 33277 umgr2cycllem 34131 umgr2cycl 34132 poimirlem29 36517 unirep 36582 heibor1lem 36677 pmapglbx 38640 stoweidlem35 44751 |
Copyright terms: Public domain | W3C validator |