| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.29 1873. See also r19.29r 3093. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | ralrexbid 3086 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
| 3 | 2 | biimpa 476 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: 2r19.29 3115 disjiun 5080 triun 5213 ralxfrd 5347 ralxfrd2 5351 elrnmptg 5903 fmpt 7044 fliftfun 7249 fiunlem 7877 fiun 7878 f1iun 7879 omabs 8569 findcard3 9172 r1sdom 9670 tcrank 9780 infxpenlem 9907 dfac12k 10042 cfslb2n 10162 cfcoflem 10166 iundom2g 10434 supsrlem 11005 axpre-sup 11063 fimaxre3 12071 hashgt23el 14331 limsupbnd2 15390 rlimuni 15457 rlimcld2 15485 rlimno1 15561 pgpfac1lem5 19960 rhmdvdsr 20393 ppttop 22892 epttop 22894 tgcnp 23138 lmcnp 23189 bwth 23295 1stcrest 23338 txlm 23533 tx1stc 23535 fbfinnfr 23726 fbunfip 23754 filuni 23770 ufileu 23804 fbflim2 23862 flftg 23881 ufilcmp 23917 cnpfcf 23926 tsmsxp 24040 metss 24394 lmmbr 25156 ivthlem2 25351 ivthlem3 25352 dyadmax 25497 tpr2rico 33879 esumpcvgval 34045 sigaclcuni 34085 voliune 34196 volfiniune 34197 dya2icoseg2 34246 onvf1odlem1 35076 umgr2cycllem 35113 umgr2cycl 35114 poimirlem29 37629 unirep 37694 heibor1lem 37789 pmapglbx 39748 stoweidlem35 46016 |
| Copyright terms: Public domain | W3C validator |