![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.29 1872. See also r19.29r 3122. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
Ref | Expression |
---|---|
r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | ralrexbid 3112 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
3 | 2 | biimpa 476 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 df-rex 3077 |
This theorem is referenced by: r19.29rOLD 3123 2r19.29 3145 r19.29d2rOLD 3147 disjiun 5154 triun 5298 ralxfrd 5426 ralxfrd2 5430 elrnmptg 5984 fmpt 7144 fliftfun 7348 fiunlem 7982 fiun 7983 f1iun 7984 omabs 8707 findcard3 9346 findcard3OLD 9347 r1sdom 9843 tcrank 9953 infxpenlem 10082 dfac12k 10217 cfslb2n 10337 cfcoflem 10341 iundom2g 10609 supsrlem 11180 axpre-sup 11238 fimaxre3 12241 hashgt23el 14473 limsupbnd2 15529 rlimuni 15596 rlimcld2 15624 rlimno1 15702 pgpfac1lem5 20123 rhmdvdsr 20534 ppttop 23035 epttop 23037 tgcnp 23282 lmcnp 23333 bwth 23439 1stcrest 23482 txlm 23677 tx1stc 23679 fbfinnfr 23870 fbunfip 23898 filuni 23914 ufileu 23948 fbflim2 24006 flftg 24025 ufilcmp 24061 cnpfcf 24070 tsmsxp 24184 metss 24542 lmmbr 25311 ivthlem2 25506 ivthlem3 25507 dyadmax 25652 tpr2rico 33858 esumpcvgval 34042 sigaclcuni 34082 voliune 34193 volfiniune 34194 dya2icoseg2 34243 umgr2cycllem 35108 umgr2cycl 35109 poimirlem29 37609 unirep 37674 heibor1lem 37769 pmapglbx 39726 stoweidlem35 45956 |
Copyright terms: Public domain | W3C validator |