MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29d2r Structured version   Visualization version   GIF version

Theorem r19.29d2r 3264
Description: Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version. (Contributed by Thierry Arnoux, 30-Jan-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.)
Hypotheses
Ref Expression
r19.29d2r.1 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
r19.29d2r.2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
Assertion
Ref Expression
r19.29d2r (𝜑 → ∃𝑥𝐴𝑦𝐵 (𝜓𝜒))

Proof of Theorem r19.29d2r
StepHypRef Expression
1 r19.29d2r.1 . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
2 r19.29d2r.2 . . 3 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
31, 2jca 512 . 2 (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ∧ ∃𝑥𝐴𝑦𝐵 𝜒))
4 2r19.29 3263 . 2 ((∀𝑥𝐴𝑦𝐵 𝜓 ∧ ∃𝑥𝐴𝑦𝐵 𝜒) → ∃𝑥𝐴𝑦𝐵 (𝜓𝜒))
53, 4syl 17 1 (𝜑 → ∃𝑥𝐴𝑦𝐵 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wral 3064  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-ral 3069  df-rex 3070
This theorem is referenced by:  ucnima  23433  tgisline  26988  r19.29ffa  30822  xrofsup  31090  icoreresf  35523  sn-negex12  40398
  Copyright terms: Public domain W3C validator