Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > r19.41dv | Structured version Visualization version GIF version |
Description: A complex deduction form of r19.41v 3276. (Contributed by Zhi Wang, 6-Sep-2024.) |
Ref | Expression |
---|---|
r19.41dv.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
r19.41dv | ⊢ ((𝜑 ∧ 𝜒) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41dv.1 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜒)) |
3 | r19.41v 3276 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ 𝜒)) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ ((𝜑 ∧ 𝜒) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-rex 3070 |
This theorem is referenced by: opnneilv 46202 |
Copyright terms: Public domain | W3C validator |