Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r19.41dv Structured version   Visualization version   GIF version

Theorem r19.41dv 46035
Description: A complex deduction form of r19.41v 3273. (Contributed by Zhi Wang, 6-Sep-2024.)
Hypothesis
Ref Expression
r19.41dv.1 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
r19.41dv ((𝜑𝜒) → ∃𝑥𝐴 (𝜓𝜒))
Distinct variable group:   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.41dv
StepHypRef Expression
1 r19.41dv.1 . . 3 (𝜑 → ∃𝑥𝐴 𝜓)
21anim1i 614 . 2 ((𝜑𝜒) → (∃𝑥𝐴 𝜓𝜒))
3 r19.41v 3273 . 2 (∃𝑥𝐴 (𝜓𝜒) ↔ (∃𝑥𝐴 𝜓𝜒))
42, 3sylibr 233 1 ((𝜑𝜒) → ∃𝑥𝐴 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-rex 3069
This theorem is referenced by:  opnneilv  46090
  Copyright terms: Public domain W3C validator