Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnneilv Structured version   Visualization version   GIF version

Theorem opnneilv 47899
Description: The converse of opnneir 47897 with different dummy variables. Note that the second hypothesis could be generalized by adding 𝑦𝐽 to the antecedent. See the proof for details. Although 𝐽 ∈ Top might be redundant here (see neircl 47895), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024.)
Hypotheses
Ref Expression
opnneir.1 (𝜑𝐽 ∈ Top)
opnneilv.2 ((𝜑𝑦𝑥) → (𝜓𝜒))
Assertion
Ref Expression
opnneilv (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦𝐽 (𝑆𝑦𝜒)))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem opnneilv
StepHypRef Expression
1 df-rex 3066 . 2 (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓))
2 opnneir.1 . . . . . . 7 (𝜑𝐽 ∈ Top)
3 neii2 23005 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦𝐽 (𝑆𝑦𝑦𝑥))
42, 3sylan 579 . . . . . 6 ((𝜑𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦𝐽 (𝑆𝑦𝑦𝑥))
54r19.41dv 47846 . . . . 5 (((𝜑𝑥 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝜓) → ∃𝑦𝐽 ((𝑆𝑦𝑦𝑥) ∧ 𝜓))
65expl 457 . . . 4 (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦𝐽 ((𝑆𝑦𝑦𝑥) ∧ 𝜓)))
7 anass 468 . . . . . 6 (((𝑆𝑦𝑦𝑥) ∧ 𝜓) ↔ (𝑆𝑦 ∧ (𝑦𝑥𝜓)))
8 opnneilv.2 . . . . . . . 8 ((𝜑𝑦𝑥) → (𝜓𝜒))
98expimpd 453 . . . . . . 7 (𝜑 → ((𝑦𝑥𝜓) → 𝜒))
109anim2d 611 . . . . . 6 (𝜑 → ((𝑆𝑦 ∧ (𝑦𝑥𝜓)) → (𝑆𝑦𝜒)))
117, 10biimtrid 241 . . . . 5 (𝜑 → (((𝑆𝑦𝑦𝑥) ∧ 𝜓) → (𝑆𝑦𝜒)))
1211reximdv 3165 . . . 4 (𝜑 → (∃𝑦𝐽 ((𝑆𝑦𝑦𝑥) ∧ 𝜓) → ∃𝑦𝐽 (𝑆𝑦𝜒)))
136, 12syld 47 . . 3 (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦𝐽 (𝑆𝑦𝜒)))
1413exlimdv 1929 . 2 (𝜑 → (∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦𝐽 (𝑆𝑦𝜒)))
151, 14biimtrid 241 1 (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦𝐽 (𝑆𝑦𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1774  wcel 2099  wrex 3065  wss 3944  cfv 6542  Topctop 22788  neicnei 22994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-top 22789  df-nei 22995
This theorem is referenced by:  opnneil  47900
  Copyright terms: Public domain W3C validator