| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opnneilv | Structured version Visualization version GIF version | ||
| Description: The converse of opnneir 49012 with different dummy variables. Note that the second hypothesis could be generalized by adding 𝑦 ∈ 𝐽 to the antecedent. See the proof for details. Although 𝐽 ∈ Top might be redundant here (see neircl 49010), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024.) |
| Ref | Expression |
|---|---|
| opnneir.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| opnneilv.2 | ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| opnneilv | ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓)) | |
| 2 | opnneir.1 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 3 | neii2 23029 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥)) | |
| 4 | 2, 3 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥)) |
| 5 | 4 | r19.41dv 48907 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 ((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓)) |
| 6 | 5 | expl 457 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 ((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓))) |
| 7 | anass 468 | . . . . . 6 ⊢ (((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓) ↔ (𝑆 ⊆ 𝑦 ∧ (𝑦 ⊆ 𝑥 ∧ 𝜓))) | |
| 8 | opnneilv.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) | |
| 9 | 8 | expimpd 453 | . . . . . . 7 ⊢ (𝜑 → ((𝑦 ⊆ 𝑥 ∧ 𝜓) → 𝜒)) |
| 10 | 9 | anim2d 612 | . . . . . 6 ⊢ (𝜑 → ((𝑆 ⊆ 𝑦 ∧ (𝑦 ⊆ 𝑥 ∧ 𝜓)) → (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
| 11 | 7, 10 | biimtrid 242 | . . . . 5 ⊢ (𝜑 → (((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓) → (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
| 12 | 11 | reximdv 3147 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐽 ((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
| 13 | 6, 12 | syld 47 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
| 14 | 13 | exlimdv 1934 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
| 15 | 1, 14 | biimtrid 242 | 1 ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 ‘cfv 6487 Topctop 22814 neicnei 23018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-top 22815 df-nei 23019 |
| This theorem is referenced by: opnneil 49015 |
| Copyright terms: Public domain | W3C validator |