|   | Mathbox for Zhi Wang | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opnneilv | Structured version Visualization version GIF version | ||
| Description: The converse of opnneir 48811 with different dummy variables. Note that the second hypothesis could be generalized by adding 𝑦 ∈ 𝐽 to the antecedent. See the proof for details. Although 𝐽 ∈ Top might be redundant here (see neircl 48809), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| opnneir.1 | ⊢ (𝜑 → 𝐽 ∈ Top) | 
| opnneilv.2 | ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| opnneilv | ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓)) | |
| 2 | opnneir.1 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 3 | neii2 23117 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥)) | |
| 4 | 2, 3 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥)) | 
| 5 | 4 | r19.41dv 48727 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 ((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓)) | 
| 6 | 5 | expl 457 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 ((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓))) | 
| 7 | anass 468 | . . . . . 6 ⊢ (((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓) ↔ (𝑆 ⊆ 𝑦 ∧ (𝑦 ⊆ 𝑥 ∧ 𝜓))) | |
| 8 | opnneilv.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) | |
| 9 | 8 | expimpd 453 | . . . . . . 7 ⊢ (𝜑 → ((𝑦 ⊆ 𝑥 ∧ 𝜓) → 𝜒)) | 
| 10 | 9 | anim2d 612 | . . . . . 6 ⊢ (𝜑 → ((𝑆 ⊆ 𝑦 ∧ (𝑦 ⊆ 𝑥 ∧ 𝜓)) → (𝑆 ⊆ 𝑦 ∧ 𝜒))) | 
| 11 | 7, 10 | biimtrid 242 | . . . . 5 ⊢ (𝜑 → (((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓) → (𝑆 ⊆ 𝑦 ∧ 𝜒))) | 
| 12 | 11 | reximdv 3169 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐽 ((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | 
| 13 | 6, 12 | syld 47 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | 
| 14 | 13 | exlimdv 1932 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | 
| 15 | 1, 14 | biimtrid 242 | 1 ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ∃wrex 3069 ⊆ wss 3950 ‘cfv 6560 Topctop 22900 neicnei 23106 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-top 22901 df-nei 23107 | 
| This theorem is referenced by: opnneil 48814 | 
| Copyright terms: Public domain | W3C validator |