![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnneilv | Structured version Visualization version GIF version |
Description: The converse of opnneir 47627 with different dummy variables. Note that the second hypothesis could be generalized by adding π¦ β π½ to the antecedent. See the proof for details. Although π½ β Top might be redundant here (see neircl 47625), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024.) |
Ref | Expression |
---|---|
opnneir.1 | β’ (π β π½ β Top) |
opnneilv.2 | β’ ((π β§ π¦ β π₯) β (π β π)) |
Ref | Expression |
---|---|
opnneilv | β’ (π β (βπ₯ β ((neiβπ½)βπ)π β βπ¦ β π½ (π β π¦ β§ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3071 | . 2 β’ (βπ₯ β ((neiβπ½)βπ)π β βπ₯(π₯ β ((neiβπ½)βπ) β§ π)) | |
2 | opnneir.1 | . . . . . . 7 β’ (π β π½ β Top) | |
3 | neii2 22832 | . . . . . . 7 β’ ((π½ β Top β§ π₯ β ((neiβπ½)βπ)) β βπ¦ β π½ (π β π¦ β§ π¦ β π₯)) | |
4 | 2, 3 | sylan 580 | . . . . . 6 β’ ((π β§ π₯ β ((neiβπ½)βπ)) β βπ¦ β π½ (π β π¦ β§ π¦ β π₯)) |
5 | 4 | r19.41dv 47575 | . . . . 5 β’ (((π β§ π₯ β ((neiβπ½)βπ)) β§ π) β βπ¦ β π½ ((π β π¦ β§ π¦ β π₯) β§ π)) |
6 | 5 | expl 458 | . . . 4 β’ (π β ((π₯ β ((neiβπ½)βπ) β§ π) β βπ¦ β π½ ((π β π¦ β§ π¦ β π₯) β§ π))) |
7 | anass 469 | . . . . . 6 β’ (((π β π¦ β§ π¦ β π₯) β§ π) β (π β π¦ β§ (π¦ β π₯ β§ π))) | |
8 | opnneilv.2 | . . . . . . . 8 β’ ((π β§ π¦ β π₯) β (π β π)) | |
9 | 8 | expimpd 454 | . . . . . . 7 β’ (π β ((π¦ β π₯ β§ π) β π)) |
10 | 9 | anim2d 612 | . . . . . 6 β’ (π β ((π β π¦ β§ (π¦ β π₯ β§ π)) β (π β π¦ β§ π))) |
11 | 7, 10 | biimtrid 241 | . . . . 5 β’ (π β (((π β π¦ β§ π¦ β π₯) β§ π) β (π β π¦ β§ π))) |
12 | 11 | reximdv 3170 | . . . 4 β’ (π β (βπ¦ β π½ ((π β π¦ β§ π¦ β π₯) β§ π) β βπ¦ β π½ (π β π¦ β§ π))) |
13 | 6, 12 | syld 47 | . . 3 β’ (π β ((π₯ β ((neiβπ½)βπ) β§ π) β βπ¦ β π½ (π β π¦ β§ π))) |
14 | 13 | exlimdv 1936 | . 2 β’ (π β (βπ₯(π₯ β ((neiβπ½)βπ) β§ π) β βπ¦ β π½ (π β π¦ β§ π))) |
15 | 1, 14 | biimtrid 241 | 1 β’ (π β (βπ₯ β ((neiβπ½)βπ)π β βπ¦ β π½ (π β π¦ β§ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 βwex 1781 β wcel 2106 βwrex 3070 β wss 3948 βcfv 6543 Topctop 22615 neicnei 22821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-top 22616 df-nei 22822 |
This theorem is referenced by: opnneil 47630 |
Copyright terms: Public domain | W3C validator |