Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnneilv Structured version   Visualization version   GIF version

Theorem opnneilv 47629
Description: The converse of opnneir 47627 with different dummy variables. Note that the second hypothesis could be generalized by adding 𝑦 ∈ 𝐽 to the antecedent. See the proof for details. Although 𝐽 ∈ Top might be redundant here (see neircl 47625), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024.)
Hypotheses
Ref Expression
opnneir.1 (πœ‘ β†’ 𝐽 ∈ Top)
opnneilv.2 ((πœ‘ ∧ 𝑦 βŠ† π‘₯) β†’ (πœ“ β†’ πœ’))
Assertion
Ref Expression
opnneilv (πœ‘ β†’ (βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜π‘†)πœ“ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝑆 βŠ† 𝑦 ∧ πœ’)))
Distinct variable groups:   π‘₯,𝐽,𝑦   π‘₯,𝑆,𝑦   πœ’,π‘₯   πœ‘,π‘₯,𝑦   πœ“,𝑦
Allowed substitution hints:   πœ“(π‘₯)   πœ’(𝑦)

Proof of Theorem opnneilv
StepHypRef Expression
1 df-rex 3071 . 2 (βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜π‘†)πœ“ ↔ βˆƒπ‘₯(π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†) ∧ πœ“))
2 opnneir.1 . . . . . . 7 (πœ‘ β†’ 𝐽 ∈ Top)
3 neii2 22832 . . . . . . 7 ((𝐽 ∈ Top ∧ π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ βˆƒπ‘¦ ∈ 𝐽 (𝑆 βŠ† 𝑦 ∧ 𝑦 βŠ† π‘₯))
42, 3sylan 580 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ βˆƒπ‘¦ ∈ 𝐽 (𝑆 βŠ† 𝑦 ∧ 𝑦 βŠ† π‘₯))
54r19.41dv 47575 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ πœ“) β†’ βˆƒπ‘¦ ∈ 𝐽 ((𝑆 βŠ† 𝑦 ∧ 𝑦 βŠ† π‘₯) ∧ πœ“))
65expl 458 . . . 4 (πœ‘ β†’ ((π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†) ∧ πœ“) β†’ βˆƒπ‘¦ ∈ 𝐽 ((𝑆 βŠ† 𝑦 ∧ 𝑦 βŠ† π‘₯) ∧ πœ“)))
7 anass 469 . . . . . 6 (((𝑆 βŠ† 𝑦 ∧ 𝑦 βŠ† π‘₯) ∧ πœ“) ↔ (𝑆 βŠ† 𝑦 ∧ (𝑦 βŠ† π‘₯ ∧ πœ“)))
8 opnneilv.2 . . . . . . . 8 ((πœ‘ ∧ 𝑦 βŠ† π‘₯) β†’ (πœ“ β†’ πœ’))
98expimpd 454 . . . . . . 7 (πœ‘ β†’ ((𝑦 βŠ† π‘₯ ∧ πœ“) β†’ πœ’))
109anim2d 612 . . . . . 6 (πœ‘ β†’ ((𝑆 βŠ† 𝑦 ∧ (𝑦 βŠ† π‘₯ ∧ πœ“)) β†’ (𝑆 βŠ† 𝑦 ∧ πœ’)))
117, 10biimtrid 241 . . . . 5 (πœ‘ β†’ (((𝑆 βŠ† 𝑦 ∧ 𝑦 βŠ† π‘₯) ∧ πœ“) β†’ (𝑆 βŠ† 𝑦 ∧ πœ’)))
1211reximdv 3170 . . . 4 (πœ‘ β†’ (βˆƒπ‘¦ ∈ 𝐽 ((𝑆 βŠ† 𝑦 ∧ 𝑦 βŠ† π‘₯) ∧ πœ“) β†’ βˆƒπ‘¦ ∈ 𝐽 (𝑆 βŠ† 𝑦 ∧ πœ’)))
136, 12syld 47 . . 3 (πœ‘ β†’ ((π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†) ∧ πœ“) β†’ βˆƒπ‘¦ ∈ 𝐽 (𝑆 βŠ† 𝑦 ∧ πœ’)))
1413exlimdv 1936 . 2 (πœ‘ β†’ (βˆƒπ‘₯(π‘₯ ∈ ((neiβ€˜π½)β€˜π‘†) ∧ πœ“) β†’ βˆƒπ‘¦ ∈ 𝐽 (𝑆 βŠ† 𝑦 ∧ πœ’)))
151, 14biimtrid 241 1 (πœ‘ β†’ (βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜π‘†)πœ“ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝑆 βŠ† 𝑦 ∧ πœ’)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396  βˆƒwex 1781   ∈ wcel 2106  βˆƒwrex 3070   βŠ† wss 3948  β€˜cfv 6543  Topctop 22615  neicnei 22821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22616  df-nei 22822
This theorem is referenced by:  opnneil  47630
  Copyright terms: Public domain W3C validator