Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnneilv | Structured version Visualization version GIF version |
Description: The converse of opnneir 46088 with different dummy variables. Note that the second hypothesis could be generalized by adding 𝑦 ∈ 𝐽 to the antecedent. See the proof for details. Although 𝐽 ∈ Top might be redundant here (see neircl 46086), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024.) |
Ref | Expression |
---|---|
opnneir.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
opnneilv.2 | ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
opnneilv | ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓)) | |
2 | opnneir.1 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) | |
3 | neii2 22167 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥)) | |
4 | 2, 3 | sylan 579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥)) |
5 | 4 | r19.41dv 46035 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 ((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓)) |
6 | 5 | expl 457 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 ((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓))) |
7 | anass 468 | . . . . . 6 ⊢ (((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓) ↔ (𝑆 ⊆ 𝑦 ∧ (𝑦 ⊆ 𝑥 ∧ 𝜓))) | |
8 | opnneilv.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) | |
9 | 8 | expimpd 453 | . . . . . . 7 ⊢ (𝜑 → ((𝑦 ⊆ 𝑥 ∧ 𝜓) → 𝜒)) |
10 | 9 | anim2d 611 | . . . . . 6 ⊢ (𝜑 → ((𝑆 ⊆ 𝑦 ∧ (𝑦 ⊆ 𝑥 ∧ 𝜓)) → (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
11 | 7, 10 | syl5bi 241 | . . . . 5 ⊢ (𝜑 → (((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓) → (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
12 | 11 | reximdv 3201 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐽 ((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
13 | 6, 12 | syld 47 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
14 | 13 | exlimdv 1937 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
15 | 1, 14 | syl5bi 241 | 1 ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 ‘cfv 6418 Topctop 21950 neicnei 22156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-top 21951 df-nei 22157 |
This theorem is referenced by: opnneil 46091 |
Copyright terms: Public domain | W3C validator |