Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnneilv Structured version   Visualization version   GIF version

Theorem opnneilv 46090
Description: The converse of opnneir 46088 with different dummy variables. Note that the second hypothesis could be generalized by adding 𝑦𝐽 to the antecedent. See the proof for details. Although 𝐽 ∈ Top might be redundant here (see neircl 46086), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024.)
Hypotheses
Ref Expression
opnneir.1 (𝜑𝐽 ∈ Top)
opnneilv.2 ((𝜑𝑦𝑥) → (𝜓𝜒))
Assertion
Ref Expression
opnneilv (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦𝐽 (𝑆𝑦𝜒)))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem opnneilv
StepHypRef Expression
1 df-rex 3069 . 2 (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓))
2 opnneir.1 . . . . . . 7 (𝜑𝐽 ∈ Top)
3 neii2 22167 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦𝐽 (𝑆𝑦𝑦𝑥))
42, 3sylan 579 . . . . . 6 ((𝜑𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦𝐽 (𝑆𝑦𝑦𝑥))
54r19.41dv 46035 . . . . 5 (((𝜑𝑥 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝜓) → ∃𝑦𝐽 ((𝑆𝑦𝑦𝑥) ∧ 𝜓))
65expl 457 . . . 4 (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦𝐽 ((𝑆𝑦𝑦𝑥) ∧ 𝜓)))
7 anass 468 . . . . . 6 (((𝑆𝑦𝑦𝑥) ∧ 𝜓) ↔ (𝑆𝑦 ∧ (𝑦𝑥𝜓)))
8 opnneilv.2 . . . . . . . 8 ((𝜑𝑦𝑥) → (𝜓𝜒))
98expimpd 453 . . . . . . 7 (𝜑 → ((𝑦𝑥𝜓) → 𝜒))
109anim2d 611 . . . . . 6 (𝜑 → ((𝑆𝑦 ∧ (𝑦𝑥𝜓)) → (𝑆𝑦𝜒)))
117, 10syl5bi 241 . . . . 5 (𝜑 → (((𝑆𝑦𝑦𝑥) ∧ 𝜓) → (𝑆𝑦𝜒)))
1211reximdv 3201 . . . 4 (𝜑 → (∃𝑦𝐽 ((𝑆𝑦𝑦𝑥) ∧ 𝜓) → ∃𝑦𝐽 (𝑆𝑦𝜒)))
136, 12syld 47 . . 3 (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦𝐽 (𝑆𝑦𝜒)))
1413exlimdv 1937 . 2 (𝜑 → (∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦𝐽 (𝑆𝑦𝜒)))
151, 14syl5bi 241 1 (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦𝐽 (𝑆𝑦𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wcel 2108  wrex 3064  wss 3883  cfv 6418  Topctop 21950  neicnei 22156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-nei 22157
This theorem is referenced by:  opnneil  46091
  Copyright terms: Public domain W3C validator