Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnneilv Structured version   Visualization version   GIF version

Theorem opnneilv 48588
Description: The converse of opnneir 48586 with different dummy variables. Note that the second hypothesis could be generalized by adding 𝑦𝐽 to the antecedent. See the proof for details. Although 𝐽 ∈ Top might be redundant here (see neircl 48584), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024.)
Hypotheses
Ref Expression
opnneir.1 (𝜑𝐽 ∈ Top)
opnneilv.2 ((𝜑𝑦𝑥) → (𝜓𝜒))
Assertion
Ref Expression
opnneilv (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦𝐽 (𝑆𝑦𝜒)))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem opnneilv
StepHypRef Expression
1 df-rex 3077 . 2 (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓))
2 opnneir.1 . . . . . . 7 (𝜑𝐽 ∈ Top)
3 neii2 23137 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦𝐽 (𝑆𝑦𝑦𝑥))
42, 3sylan 579 . . . . . 6 ((𝜑𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦𝐽 (𝑆𝑦𝑦𝑥))
54r19.41dv 48535 . . . . 5 (((𝜑𝑥 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝜓) → ∃𝑦𝐽 ((𝑆𝑦𝑦𝑥) ∧ 𝜓))
65expl 457 . . . 4 (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦𝐽 ((𝑆𝑦𝑦𝑥) ∧ 𝜓)))
7 anass 468 . . . . . 6 (((𝑆𝑦𝑦𝑥) ∧ 𝜓) ↔ (𝑆𝑦 ∧ (𝑦𝑥𝜓)))
8 opnneilv.2 . . . . . . . 8 ((𝜑𝑦𝑥) → (𝜓𝜒))
98expimpd 453 . . . . . . 7 (𝜑 → ((𝑦𝑥𝜓) → 𝜒))
109anim2d 611 . . . . . 6 (𝜑 → ((𝑆𝑦 ∧ (𝑦𝑥𝜓)) → (𝑆𝑦𝜒)))
117, 10biimtrid 242 . . . . 5 (𝜑 → (((𝑆𝑦𝑦𝑥) ∧ 𝜓) → (𝑆𝑦𝜒)))
1211reximdv 3176 . . . 4 (𝜑 → (∃𝑦𝐽 ((𝑆𝑦𝑦𝑥) ∧ 𝜓) → ∃𝑦𝐽 (𝑆𝑦𝜒)))
136, 12syld 47 . . 3 (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦𝐽 (𝑆𝑦𝜒)))
1413exlimdv 1932 . 2 (𝜑 → (∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦𝐽 (𝑆𝑦𝜒)))
151, 14biimtrid 242 1 (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦𝐽 (𝑆𝑦𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1777  wcel 2108  wrex 3076  wss 3976  cfv 6573  Topctop 22920  neicnei 23126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-nei 23127
This theorem is referenced by:  opnneil  48589
  Copyright terms: Public domain W3C validator