![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnneilv | Structured version Visualization version GIF version |
Description: The converse of opnneir 48586 with different dummy variables. Note that the second hypothesis could be generalized by adding 𝑦 ∈ 𝐽 to the antecedent. See the proof for details. Although 𝐽 ∈ Top might be redundant here (see neircl 48584), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024.) |
Ref | Expression |
---|---|
opnneir.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
opnneilv.2 | ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
opnneilv | ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓)) | |
2 | opnneir.1 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) | |
3 | neii2 23137 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥)) | |
4 | 2, 3 | sylan 579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥)) |
5 | 4 | r19.41dv 48535 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ((nei‘𝐽)‘𝑆)) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 ((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓)) |
6 | 5 | expl 457 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 ((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓))) |
7 | anass 468 | . . . . . 6 ⊢ (((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓) ↔ (𝑆 ⊆ 𝑦 ∧ (𝑦 ⊆ 𝑥 ∧ 𝜓))) | |
8 | opnneilv.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑥) → (𝜓 → 𝜒)) | |
9 | 8 | expimpd 453 | . . . . . . 7 ⊢ (𝜑 → ((𝑦 ⊆ 𝑥 ∧ 𝜓) → 𝜒)) |
10 | 9 | anim2d 611 | . . . . . 6 ⊢ (𝜑 → ((𝑆 ⊆ 𝑦 ∧ (𝑦 ⊆ 𝑥 ∧ 𝜓)) → (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
11 | 7, 10 | biimtrid 242 | . . . . 5 ⊢ (𝜑 → (((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓) → (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
12 | 11 | reximdv 3176 | . . . 4 ⊢ (𝜑 → (∃𝑦 ∈ 𝐽 ((𝑆 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑥) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
13 | 6, 12 | syld 47 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
14 | 13 | exlimdv 1932 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝜓) → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
15 | 1, 14 | biimtrid 242 | 1 ⊢ (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦 ∈ 𝐽 (𝑆 ⊆ 𝑦 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 ‘cfv 6573 Topctop 22920 neicnei 23126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-top 22921 df-nei 23127 |
This theorem is referenced by: opnneil 48589 |
Copyright terms: Public domain | W3C validator |