MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspceb2dv Structured version   Visualization version   GIF version

Theorem rspceb2dv 3626
Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by Zhi Wang, 28-Sep-2024.)
Hypotheses
Ref Expression
rspceb2dv.1 ((𝜑𝑥𝐵) → (𝜓𝜒))
rspceb2dv.2 ((𝜑𝜒) → 𝐴𝐵)
rspceb2dv.3 ((𝜑𝜒) → 𝜃)
rspceb2dv.4 (𝑥 = 𝐴 → (𝜓𝜃))
Assertion
Ref Expression
rspceb2dv (𝜑 → (∃𝑥𝐵 𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥   𝜑,𝑥   𝜃,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspceb2dv
StepHypRef Expression
1 rspceb2dv.1 . . 3 ((𝜑𝑥𝐵) → (𝜓𝜒))
21rexlimdva 3153 . 2 (𝜑 → (∃𝑥𝐵 𝜓𝜒))
3 rspceb2dv.2 . . . 4 ((𝜑𝜒) → 𝐴𝐵)
4 rspceb2dv.3 . . . 4 ((𝜑𝜒) → 𝜃)
5 rspceb2dv.4 . . . . 5 (𝑥 = 𝐴 → (𝜓𝜃))
65rspcev 3622 . . . 4 ((𝐴𝐵𝜃) → ∃𝑥𝐵 𝜓)
73, 4, 6syl2anc 584 . . 3 ((𝜑𝜒) → ∃𝑥𝐵 𝜓)
87ex 412 . 2 (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
92, 8impbid 212 1 (𝜑 → (∃𝑥𝐵 𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069
This theorem is referenced by:  negfi  12215  psdmul  22188  uspgrlimlem1  47891  ipolubdm  48776  ipoglbdm  48779
  Copyright terms: Public domain W3C validator