| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspceb2dv | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by Zhi Wang, 28-Sep-2024.) |
| Ref | Expression |
|---|---|
| rspceb2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 → 𝜒)) |
| rspceb2dv.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝐴 ∈ 𝐵) |
| rspceb2dv.3 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| rspceb2dv.4 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| rspceb2dv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceb2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 → 𝜒)) | |
| 2 | 1 | rexlimdva 3142 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| 3 | rspceb2dv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜒) → 𝐴 ∈ 𝐵) | |
| 4 | rspceb2dv.3 | . . . 4 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 5 | rspceb2dv.4 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 6 | 5 | rspcev 3606 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜃) → ∃𝑥 ∈ 𝐵 𝜓) |
| 7 | 3, 4, 6 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → ∃𝑥 ∈ 𝐵 𝜓) |
| 8 | 7 | ex 412 | . 2 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| 9 | 2, 8 | impbid 212 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: negfi 12196 psdmul 22109 uspgrlimlem1 47980 ipolubdm 48941 ipoglbdm 48944 |
| Copyright terms: Public domain | W3C validator |