Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.41v | Structured version Visualization version GIF version |
Description: Restricted quantifier version 19.41v 1952. Version of r19.41 3242 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
Ref | Expression |
---|---|
r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 469 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
2 | 1 | exbii 1849 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
3 | 19.41v 1952 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) | |
4 | 2, 3 | bitr3i 276 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
5 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
6 | df-rex 3071 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
7 | 6 | anbi1i 624 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
8 | 4, 5, 7 | 3bitr4i 302 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1780 ∈ wcel 2105 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-rex 3071 |
This theorem is referenced by: r19.42v 3183 r19.41vv 3211 3reeanv 3214 reuxfr1d 3696 reuind 3699 iuncom4 4949 dfiun2gOLD 4978 iunxiun 5044 inuni 5287 xpiundi 5688 xpiundir 5689 imaco 6189 coiun 6194 abrexco 7173 imaiun 7174 isomin 7264 isoini 7265 oarec 8464 mapsnend 8901 unfi 9037 brttrcl2 9571 genpass 10866 4fvwrd4 13477 4sqlem12 16754 imasleval 17349 lsmspsn 20452 utoptop 23492 metrest 23786 metust 23820 cfilucfil 23821 metuel2 23827 istrkg2ld 27110 axsegcon 27584 fusgreg2wsp 28988 nmoo0 29441 nmop0 30636 nmfn0 30637 rexunirn 31128 dmrab 31132 iunrnmptss 31192 ressupprn 31311 ordtconnlem1 32172 dya2icoseg2 32545 dya2iocnei 32549 omssubaddlem 32566 omssubadd 32567 satfvsuclem2 33621 satf0 33633 satffunlem1lem2 33664 satffunlem2lem2 33667 imaeqsexv 33980 bj-mpomptALT 35403 mptsnunlem 35622 fvineqsneq 35696 rabiun 35863 iundif1 35864 poimir 35923 ismblfin 35931 eldmqs1cossres 36934 erimeq2 36953 prter2 37156 prter3 37157 islshpat 37292 lshpsmreu 37384 islpln5 37811 islvol5 37855 cdlemftr3 38841 dvhb1dimN 39262 dib1dim 39441 mapdpglem3 39951 hdmapglem7a 40203 diophrex 40867 r19.41dv 46507 |
Copyright terms: Public domain | W3C validator |