| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.41v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version 19.41v 1950. Version of r19.41 3237 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 2 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 3 | 2 | exbii 1849 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
| 4 | 19.41v 1950 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) | |
| 5 | df-rex 3058 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 5 | bicomi 224 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| 7 | 4, 6 | bianbi 627 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| 8 | 1, 3, 7 | 3bitr2i 299 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3058 |
| This theorem is referenced by: r19.42v 3165 r19.41vv 3203 3reeanv 3206 reuxfr1d 3705 reuind 3708 iuncom4 4952 iunxiun 5049 inuni 5292 xpiundi 5692 xpiundir 5693 imaco 6206 coiun 6212 abrexco 7187 imaiun 7188 isomin 7280 isoini 7281 imaeqsexvOLD 7306 imaeqexov 7593 oarec 8486 mapsnend 8969 unfi 9091 brttrcl2 9615 genpass 10911 4fvwrd4 13555 4sqlem12 16875 imasleval 17453 lsmspsn 21027 utoptop 24169 metrest 24459 metust 24493 cfilucfil 24494 metuel2 24500 sleadd1 27952 addsuniflem 27964 addsasslem1 27966 addsasslem2 27967 addsdilem1 28110 0reno 28419 renegscl 28420 readdscl 28421 remulscl 28424 istrkg2ld 28458 axsegcon 28926 fusgreg2wsp 30337 nmoo0 30792 nmop0 31987 nmfn0 31988 rexunirn 32492 dmrab 32497 iunrnmptss 32566 ressupprn 32695 ordtconnlem1 34009 dya2icoseg2 34363 dya2iocnei 34367 omssubaddlem 34384 omssubadd 34385 r1omhf 35189 satfvsuclem2 35476 satf0 35488 satffunlem1lem2 35519 satffunlem2lem2 35522 rexxfr3dALT 35755 bj-mpomptALT 37236 mptsnunlem 37455 fvineqsneq 37529 rabiun 37706 iundif1 37707 poimir 37766 ismblfin 37774 eldmqs1cossres 38830 erimeq2 38849 prter2 39053 prter3 39054 islshpat 39189 lshpsmreu 39281 islpln5 39707 islvol5 39751 cdlemftr3 40737 dvhb1dimN 41158 dib1dim 41337 mapdpglem3 41847 hdmapglem7a 42099 diophrex 42932 dfsclnbgr6 48020 r19.41dv 48963 reuxfr1dd 48968 |
| Copyright terms: Public domain | W3C validator |