| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.41v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version 19.41v 1950. Version of r19.41 3236 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 2 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 3 | 2 | exbii 1849 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
| 4 | 19.41v 1950 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) | |
| 5 | df-rex 3057 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 5 | bicomi 224 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| 7 | 4, 6 | bianbi 627 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| 8 | 1, 3, 7 | 3bitr2i 299 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: r19.42v 3164 r19.41vv 3202 3reeanv 3205 reuxfr1d 3704 reuind 3707 iuncom4 4945 iunxiun 5040 inuni 5283 xpiundi 5682 xpiundir 5683 imaco 6193 coiun 6199 abrexco 7173 imaiun 7174 isomin 7266 isoini 7267 imaeqsexvOLD 7292 imaeqexov 7579 oarec 8472 mapsnend 8953 unfi 9075 brttrcl2 9599 genpass 10895 4fvwrd4 13543 4sqlem12 16863 imasleval 17440 lsmspsn 21013 utoptop 24144 metrest 24434 metust 24468 cfilucfil 24469 metuel2 24475 sleadd1 27927 addsuniflem 27939 addsasslem1 27941 addsasslem2 27942 addsdilem1 28085 0reno 28394 renegscl 28395 readdscl 28396 remulscl 28399 istrkg2ld 28433 axsegcon 28900 fusgreg2wsp 30308 nmoo0 30763 nmop0 31958 nmfn0 31959 rexunirn 32463 dmrab 32468 iunrnmptss 32537 ressupprn 32663 ordtconnlem1 33929 dya2icoseg2 34283 dya2iocnei 34287 omssubaddlem 34304 omssubadd 34305 r1omhf 35109 satfvsuclem2 35396 satf0 35408 satffunlem1lem2 35439 satffunlem2lem2 35442 rexxfr3dALT 35675 bj-mpomptALT 37153 mptsnunlem 37372 fvineqsneq 37446 rabiun 37633 iundif1 37634 poimir 37693 ismblfin 37701 eldmqs1cossres 38697 erimeq2 38716 prter2 38920 prter3 38921 islshpat 39056 lshpsmreu 39148 islpln5 39574 islvol5 39618 cdlemftr3 40604 dvhb1dimN 41025 dib1dim 41204 mapdpglem3 41714 hdmapglem7a 41966 diophrex 42808 dfsclnbgr6 47889 r19.41dv 48833 reuxfr1dd 48838 |
| Copyright terms: Public domain | W3C validator |