| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.41v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version 19.41v 1949. Version of r19.41 3242 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 2 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 3 | 2 | exbii 1848 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
| 4 | 19.41v 1949 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) | |
| 5 | df-rex 3055 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 5 | bicomi 224 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| 7 | 4, 6 | bianbi 627 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| 8 | 1, 3, 7 | 3bitr2i 299 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: r19.42v 3170 r19.41vv 3208 3reeanv 3211 reuxfr1d 3724 reuind 3727 iuncom4 4967 dfiun2gOLD 4998 iunxiun 5064 inuni 5308 xpiundi 5712 xpiundir 5713 imaco 6227 coiun 6232 abrexco 7221 imaiun 7222 isomin 7315 isoini 7316 imaeqsexvOLD 7341 imaeqexov 7630 oarec 8529 mapsnend 9010 unfi 9141 brttrcl2 9674 genpass 10969 4fvwrd4 13616 4sqlem12 16934 imasleval 17511 lsmspsn 20998 utoptop 24129 metrest 24419 metust 24453 cfilucfil 24454 metuel2 24460 sleadd1 27903 addsuniflem 27915 addsasslem1 27917 addsasslem2 27918 addsdilem1 28061 0reno 28355 renegscl 28356 readdscl 28357 remulscl 28360 istrkg2ld 28394 axsegcon 28861 fusgreg2wsp 30272 nmoo0 30727 nmop0 31922 nmfn0 31923 rexunirn 32428 dmrab 32433 iunrnmptss 32501 ressupprn 32620 ordtconnlem1 33921 dya2icoseg2 34276 dya2iocnei 34280 omssubaddlem 34297 omssubadd 34298 satfvsuclem2 35354 satf0 35366 satffunlem1lem2 35397 satffunlem2lem2 35400 rexxfr3dALT 35633 bj-mpomptALT 37114 mptsnunlem 37333 fvineqsneq 37407 rabiun 37594 iundif1 37595 poimir 37654 ismblfin 37662 eldmqs1cossres 38658 erimeq2 38677 prter2 38881 prter3 38882 islshpat 39017 lshpsmreu 39109 islpln5 39536 islvol5 39580 cdlemftr3 40566 dvhb1dimN 40987 dib1dim 41166 mapdpglem3 41676 hdmapglem7a 41928 diophrex 42770 dfsclnbgr6 47862 r19.41dv 48794 reuxfr1dd 48799 |
| Copyright terms: Public domain | W3C validator |