Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.41v | Structured version Visualization version GIF version |
Description: Restricted quantifier version 19.41v 1954. Version of r19.41 3274 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
Ref | Expression |
---|---|
r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
2 | 1 | exbii 1851 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
3 | 19.41v 1954 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) | |
4 | 2, 3 | bitr3i 276 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
5 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
6 | df-rex 3069 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
7 | 6 | anbi1i 623 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
8 | 4, 5, 7 | 3bitr4i 302 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-rex 3069 |
This theorem is referenced by: r19.41vv 3275 r19.42v 3276 3reeanv 3293 reuxfr1d 3680 reuind 3683 iuncom4 4929 dfiun2g 4957 iunxiun 5022 inuni 5262 xpiundi 5648 xpiundir 5649 imaco 6144 coiun 6149 abrexco 7099 imaiun 7100 isomin 7188 isoini 7189 oarec 8355 mapsnend 8780 unfi 8917 genpass 10696 4fvwrd4 13305 4sqlem12 16585 imasleval 17169 lsmspsn 20261 utoptop 23294 metrest 23586 metust 23620 cfilucfil 23621 metuel2 23627 istrkg2ld 26725 axsegcon 27198 fusgreg2wsp 28601 nmoo0 29054 nmop0 30249 nmfn0 30250 rexunirn 30741 dmrab 30745 iunrnmptss 30806 ressupprn 30926 ordtconnlem1 31776 dya2icoseg2 32145 dya2iocnei 32149 omssubaddlem 32166 omssubadd 32167 satfvsuclem2 33222 satf0 33234 satffunlem1lem2 33265 satffunlem2lem2 33268 imaeqsexv 33593 brttrcl2 33700 bj-mpomptALT 35217 mptsnunlem 35436 fvineqsneq 35510 rabiun 35677 iundif1 35678 poimir 35737 ismblfin 35745 eldmqs1cossres 36698 erim2 36716 prter2 36822 prter3 36823 islshpat 36958 lshpsmreu 37050 islpln5 37476 islvol5 37520 cdlemftr3 38506 dvhb1dimN 38927 dib1dim 39106 mapdpglem3 39616 hdmapglem7a 39868 diophrex 40513 r19.41dv 46035 |
Copyright terms: Public domain | W3C validator |