| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.41v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version 19.41v 1949. Version of r19.41 3246 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3061 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 2 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 3 | 2 | exbii 1848 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
| 4 | 19.41v 1949 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) | |
| 5 | df-rex 3061 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 5 | bicomi 224 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| 7 | 4, 6 | bianbi 627 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| 8 | 1, 3, 7 | 3bitr2i 299 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: r19.42v 3176 r19.41vv 3211 3reeanv 3214 reuxfr1d 3733 reuind 3736 iuncom4 4976 dfiun2gOLD 5007 iunxiun 5073 inuni 5320 xpiundi 5725 xpiundir 5726 imaco 6240 coiun 6245 abrexco 7236 imaiun 7237 isomin 7330 isoini 7331 imaeqsexvOLD 7356 imaeqexov 7645 oarec 8574 mapsnend 9050 unfi 9185 brttrcl2 9728 genpass 11023 4fvwrd4 13665 4sqlem12 16976 imasleval 17555 lsmspsn 21042 utoptop 24173 metrest 24463 metust 24497 cfilucfil 24498 metuel2 24504 sleadd1 27948 addsuniflem 27960 addsasslem1 27962 addsasslem2 27963 addsdilem1 28106 0reno 28400 renegscl 28401 readdscl 28402 remulscl 28405 istrkg2ld 28439 axsegcon 28906 fusgreg2wsp 30317 nmoo0 30772 nmop0 31967 nmfn0 31968 rexunirn 32473 dmrab 32478 iunrnmptss 32546 ressupprn 32667 ordtconnlem1 33955 dya2icoseg2 34310 dya2iocnei 34314 omssubaddlem 34331 omssubadd 34332 satfvsuclem2 35382 satf0 35394 satffunlem1lem2 35425 satffunlem2lem2 35428 rexxfr3dALT 35661 bj-mpomptALT 37137 mptsnunlem 37356 fvineqsneq 37430 rabiun 37617 iundif1 37618 poimir 37677 ismblfin 37685 eldmqs1cossres 38677 erimeq2 38696 prter2 38899 prter3 38900 islshpat 39035 lshpsmreu 39127 islpln5 39554 islvol5 39598 cdlemftr3 40584 dvhb1dimN 41005 dib1dim 41184 mapdpglem3 41694 hdmapglem7a 41946 diophrex 42798 dfsclnbgr6 47871 r19.41dv 48781 reuxfr1dd 48785 |
| Copyright terms: Public domain | W3C validator |