Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.41v | Structured version Visualization version GIF version |
Description: Restricted quantifier version 19.41v 1954. Version of r19.41 3278 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
Ref | Expression |
---|---|
r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 469 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
2 | 1 | exbii 1851 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
3 | 19.41v 1954 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) | |
4 | 2, 3 | bitr3i 276 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
5 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
6 | df-rex 3071 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
7 | 6 | anbi1i 624 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
8 | 4, 5, 7 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2107 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-rex 3071 |
This theorem is referenced by: r19.41vv 3279 r19.42v 3280 3reeanv 3296 reuxfr1d 3686 reuind 3689 iuncom4 4933 dfiun2gOLD 4962 iunxiun 5027 inuni 5268 xpiundi 5658 xpiundir 5659 imaco 6159 coiun 6164 abrexco 7126 imaiun 7127 isomin 7217 isoini 7218 oarec 8402 mapsnend 8835 unfi 8964 brttrcl2 9481 genpass 10774 4fvwrd4 13385 4sqlem12 16666 imasleval 17261 lsmspsn 20355 utoptop 23395 metrest 23689 metust 23723 cfilucfil 23724 metuel2 23730 istrkg2ld 26830 axsegcon 27304 fusgreg2wsp 28709 nmoo0 29162 nmop0 30357 nmfn0 30358 rexunirn 30849 dmrab 30853 iunrnmptss 30914 ressupprn 31033 ordtconnlem1 31883 dya2icoseg2 32254 dya2iocnei 32258 omssubaddlem 32275 omssubadd 32276 satfvsuclem2 33331 satf0 33343 satffunlem1lem2 33374 satffunlem2lem2 33377 imaeqsexv 33699 bj-mpomptALT 35299 mptsnunlem 35518 fvineqsneq 35592 rabiun 35759 iundif1 35760 poimir 35819 ismblfin 35827 eldmqs1cossres 36778 erim2 36796 prter2 36902 prter3 36903 islshpat 37038 lshpsmreu 37130 islpln5 37556 islvol5 37600 cdlemftr3 38586 dvhb1dimN 39007 dib1dim 39186 mapdpglem3 39696 hdmapglem7a 39948 diophrex 40604 r19.41dv 46158 |
Copyright terms: Public domain | W3C validator |