| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.41v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version 19.41v 1949. Version of r19.41 3239 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 2 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 3 | 2 | exbii 1848 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
| 4 | 19.41v 1949 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) | |
| 5 | df-rex 3054 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 5 | bicomi 224 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| 7 | 4, 6 | bianbi 627 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| 8 | 1, 3, 7 | 3bitr2i 299 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: r19.42v 3167 r19.41vv 3205 3reeanv 3208 reuxfr1d 3718 reuind 3721 iuncom4 4960 iunxiun 5056 inuni 5300 xpiundi 5702 xpiundir 5703 imaco 6212 coiun 6217 abrexco 7200 imaiun 7201 isomin 7294 isoini 7295 imaeqsexvOLD 7320 imaeqexov 7607 oarec 8503 mapsnend 8984 unfi 9112 brttrcl2 9643 genpass 10938 4fvwrd4 13585 4sqlem12 16903 imasleval 17480 lsmspsn 20967 utoptop 24098 metrest 24388 metust 24422 cfilucfil 24423 metuel2 24429 sleadd1 27872 addsuniflem 27884 addsasslem1 27886 addsasslem2 27887 addsdilem1 28030 0reno 28324 renegscl 28325 readdscl 28326 remulscl 28329 istrkg2ld 28363 axsegcon 28830 fusgreg2wsp 30238 nmoo0 30693 nmop0 31888 nmfn0 31889 rexunirn 32394 dmrab 32399 iunrnmptss 32467 ressupprn 32586 ordtconnlem1 33887 dya2icoseg2 34242 dya2iocnei 34246 omssubaddlem 34263 omssubadd 34264 satfvsuclem2 35320 satf0 35332 satffunlem1lem2 35363 satffunlem2lem2 35366 rexxfr3dALT 35599 bj-mpomptALT 37080 mptsnunlem 37299 fvineqsneq 37373 rabiun 37560 iundif1 37561 poimir 37620 ismblfin 37628 eldmqs1cossres 38624 erimeq2 38643 prter2 38847 prter3 38848 islshpat 38983 lshpsmreu 39075 islpln5 39502 islvol5 39546 cdlemftr3 40532 dvhb1dimN 40953 dib1dim 41132 mapdpglem3 41642 hdmapglem7a 41894 diophrex 42736 dfsclnbgr6 47831 r19.41dv 48763 reuxfr1dd 48768 |
| Copyright terms: Public domain | W3C validator |