![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.41v | Structured version Visualization version GIF version |
Description: Restricted quantifier version 19.41v 1951. Version of r19.41 3258 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
Ref | Expression |
---|---|
r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 467 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
2 | 1 | exbii 1848 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
3 | 19.41v 1951 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) | |
4 | 2, 3 | bitr3i 276 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
5 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
6 | df-rex 3069 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
7 | 6 | anbi1i 622 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
8 | 4, 5, 7 | 3bitr4i 302 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∃wex 1779 ∈ wcel 2104 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-rex 3069 |
This theorem is referenced by: r19.42v 3188 r19.41vv 3222 3reeanv 3225 reuxfr1d 3745 reuind 3748 iuncom4 5004 dfiun2gOLD 5033 iunxiun 5099 inuni 5342 xpiundi 5745 xpiundir 5746 imaco 6249 coiun 6254 abrexco 7245 imaiun 7246 isomin 7336 isoini 7337 imaeqsexv 7362 imaeqexov 7647 oarec 8564 mapsnend 9038 unfi 9174 brttrcl2 9711 genpass 11006 4fvwrd4 13625 4sqlem12 16893 imasleval 17491 lsmspsn 20839 utoptop 23959 metrest 24253 metust 24287 cfilucfil 24288 metuel2 24294 sleadd1 27711 addsuniflem 27723 addsasslem1 27725 addsasslem2 27726 addsdilem1 27845 istrkg2ld 27978 axsegcon 28452 fusgreg2wsp 29856 nmoo0 30311 nmop0 31506 nmfn0 31507 rexunirn 31999 dmrab 32004 iunrnmptss 32064 ressupprn 32179 ordtconnlem1 33202 dya2icoseg2 33575 dya2iocnei 33579 omssubaddlem 33596 omssubadd 33597 satfvsuclem2 34649 satf0 34661 satffunlem1lem2 34692 satffunlem2lem2 34695 bj-mpomptALT 36303 mptsnunlem 36522 fvineqsneq 36596 rabiun 36764 iundif1 36765 poimir 36824 ismblfin 36832 eldmqs1cossres 37832 erimeq2 37851 prter2 38054 prter3 38055 islshpat 38190 lshpsmreu 38282 islpln5 38709 islvol5 38753 cdlemftr3 39739 dvhb1dimN 40160 dib1dim 40339 mapdpglem3 40849 hdmapglem7a 41101 diophrex 41815 r19.41dv 47574 |
Copyright terms: Public domain | W3C validator |