| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.41v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version 19.41v 1949. Version of r19.41 3233 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 2 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 3 | 2 | exbii 1848 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
| 4 | 19.41v 1949 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) | |
| 5 | df-rex 3054 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 5 | bicomi 224 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| 7 | 4, 6 | bianbi 627 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| 8 | 1, 3, 7 | 3bitr2i 299 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: r19.42v 3161 r19.41vv 3199 3reeanv 3202 reuxfr1d 3712 reuind 3715 iuncom4 4953 iunxiun 5049 inuni 5292 xpiundi 5694 xpiundir 5695 imaco 6204 coiun 6209 abrexco 7184 imaiun 7185 isomin 7278 isoini 7279 imaeqsexvOLD 7304 imaeqexov 7591 oarec 8487 mapsnend 8968 unfi 9095 brttrcl2 9629 genpass 10922 4fvwrd4 13570 4sqlem12 16887 imasleval 17464 lsmspsn 21007 utoptop 24139 metrest 24429 metust 24463 cfilucfil 24464 metuel2 24470 sleadd1 27920 addsuniflem 27932 addsasslem1 27934 addsasslem2 27935 addsdilem1 28078 0reno 28385 renegscl 28386 readdscl 28387 remulscl 28390 istrkg2ld 28424 axsegcon 28891 fusgreg2wsp 30299 nmoo0 30754 nmop0 31949 nmfn0 31950 rexunirn 32455 dmrab 32460 iunrnmptss 32528 ressupprn 32651 ordtconnlem1 33910 dya2icoseg2 34265 dya2iocnei 34269 omssubaddlem 34286 omssubadd 34287 satfvsuclem2 35352 satf0 35364 satffunlem1lem2 35395 satffunlem2lem2 35398 rexxfr3dALT 35631 bj-mpomptALT 37112 mptsnunlem 37331 fvineqsneq 37405 rabiun 37592 iundif1 37593 poimir 37652 ismblfin 37660 eldmqs1cossres 38656 erimeq2 38675 prter2 38879 prter3 38880 islshpat 39015 lshpsmreu 39107 islpln5 39534 islvol5 39578 cdlemftr3 40564 dvhb1dimN 40985 dib1dim 41164 mapdpglem3 41674 hdmapglem7a 41926 diophrex 42768 dfsclnbgr6 47862 r19.41dv 48806 reuxfr1dd 48811 |
| Copyright terms: Public domain | W3C validator |