| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.41v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version 19.41v 1949. Version of r19.41 3241 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 2 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
| 3 | 2 | exbii 1848 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
| 4 | 19.41v 1949 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) | |
| 5 | df-rex 3054 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 5 | bicomi 224 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| 7 | 4, 6 | bianbi 627 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| 8 | 1, 3, 7 | 3bitr2i 299 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: r19.42v 3169 r19.41vv 3207 3reeanv 3210 reuxfr1d 3721 reuind 3724 iuncom4 4964 dfiun2gOLD 4995 iunxiun 5061 inuni 5305 xpiundi 5709 xpiundir 5710 imaco 6224 coiun 6229 abrexco 7218 imaiun 7219 isomin 7312 isoini 7313 imaeqsexvOLD 7338 imaeqexov 7627 oarec 8526 mapsnend 9007 unfi 9135 brttrcl2 9667 genpass 10962 4fvwrd4 13609 4sqlem12 16927 imasleval 17504 lsmspsn 20991 utoptop 24122 metrest 24412 metust 24446 cfilucfil 24447 metuel2 24453 sleadd1 27896 addsuniflem 27908 addsasslem1 27910 addsasslem2 27911 addsdilem1 28054 0reno 28348 renegscl 28349 readdscl 28350 remulscl 28353 istrkg2ld 28387 axsegcon 28854 fusgreg2wsp 30265 nmoo0 30720 nmop0 31915 nmfn0 31916 rexunirn 32421 dmrab 32426 iunrnmptss 32494 ressupprn 32613 ordtconnlem1 33914 dya2icoseg2 34269 dya2iocnei 34273 omssubaddlem 34290 omssubadd 34291 satfvsuclem2 35347 satf0 35359 satffunlem1lem2 35390 satffunlem2lem2 35393 rexxfr3dALT 35626 bj-mpomptALT 37107 mptsnunlem 37326 fvineqsneq 37400 rabiun 37587 iundif1 37588 poimir 37647 ismblfin 37655 eldmqs1cossres 38651 erimeq2 38670 prter2 38874 prter3 38875 islshpat 39010 lshpsmreu 39102 islpln5 39529 islvol5 39573 cdlemftr3 40559 dvhb1dimN 40980 dib1dim 41159 mapdpglem3 41669 hdmapglem7a 41921 diophrex 42763 dfsclnbgr6 47858 r19.41dv 48790 reuxfr1dd 48795 |
| Copyright terms: Public domain | W3C validator |