![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.41v | Structured version Visualization version GIF version |
Description: Restricted quantifier version 19.41v 1946. Version of r19.41 3260 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
Ref | Expression |
---|---|
r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3068 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
2 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
3 | 2 | exbii 1844 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
4 | 19.41v 1946 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) | |
5 | df-rex 3068 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 5 | bicomi 224 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
7 | 4, 6 | bianbi 627 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
8 | 1, 3, 7 | 3bitr2i 299 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1775 ∈ wcel 2105 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-rex 3068 |
This theorem is referenced by: r19.42v 3188 r19.41vv 3224 3reeanv 3227 reuxfr1d 3758 reuind 3761 iuncom4 5004 dfiun2gOLD 5035 iunxiun 5101 inuni 5355 xpiundi 5758 xpiundir 5759 imaco 6272 coiun 6277 abrexco 7263 imaiun 7264 isomin 7356 isoini 7357 imaeqsexvOLD 7382 imaeqexov 7670 oarec 8598 mapsnend 9074 unfi 9209 brttrcl2 9751 genpass 11046 4fvwrd4 13684 4sqlem12 16989 imasleval 17587 lsmspsn 21100 utoptop 24258 metrest 24552 metust 24586 cfilucfil 24587 metuel2 24593 sleadd1 28036 addsuniflem 28048 addsasslem1 28050 addsasslem2 28051 addsdilem1 28191 0reno 28443 renegscl 28444 readdscl 28445 remulscl 28448 istrkg2ld 28482 axsegcon 28956 fusgreg2wsp 30364 nmoo0 30819 nmop0 32014 nmfn0 32015 rexunirn 32519 dmrab 32524 iunrnmptss 32585 ressupprn 32704 ordtconnlem1 33884 dya2icoseg2 34259 dya2iocnei 34263 omssubaddlem 34280 omssubadd 34281 satfvsuclem2 35344 satf0 35356 satffunlem1lem2 35387 satffunlem2lem2 35390 rexxfr3dALT 35623 bj-mpomptALT 37101 mptsnunlem 37320 fvineqsneq 37394 rabiun 37579 iundif1 37580 poimir 37639 ismblfin 37647 eldmqs1cossres 38640 erimeq2 38659 prter2 38862 prter3 38863 islshpat 38998 lshpsmreu 39090 islpln5 39517 islvol5 39561 cdlemftr3 40547 dvhb1dimN 40968 dib1dim 41147 mapdpglem3 41657 hdmapglem7a 41909 diophrex 42762 dfsclnbgr6 47781 r19.41dv 48650 reuxfr1dd 48654 |
Copyright terms: Public domain | W3C validator |