![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.41v | Structured version Visualization version GIF version |
Description: Restricted quantifier version 19.41v 1949. Version of r19.41 3269 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.) |
Ref | Expression |
---|---|
r19.41v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
2 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
3 | 2 | exbii 1846 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
4 | 19.41v 1949 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) | |
5 | df-rex 3077 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 5 | bicomi 224 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 𝜑) |
7 | 4, 6 | bianbi 626 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
8 | 1, 3, 7 | 3bitr2i 299 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: r19.42v 3197 r19.41vv 3233 3reeanv 3236 reuxfr1d 3772 reuind 3775 iuncom4 5023 dfiun2gOLD 5054 iunxiun 5120 inuni 5368 xpiundi 5770 xpiundir 5771 imaco 6282 coiun 6287 abrexco 7281 imaiun 7282 isomin 7373 isoini 7374 imaeqsexvOLD 7399 imaeqexov 7688 oarec 8618 mapsnend 9101 unfi 9238 brttrcl2 9783 genpass 11078 4fvwrd4 13705 4sqlem12 17003 imasleval 17601 lsmspsn 21106 utoptop 24264 metrest 24558 metust 24592 cfilucfil 24593 metuel2 24599 sleadd1 28040 addsuniflem 28052 addsasslem1 28054 addsasslem2 28055 addsdilem1 28195 0reno 28447 renegscl 28448 readdscl 28449 remulscl 28452 istrkg2ld 28486 axsegcon 28960 fusgreg2wsp 30368 nmoo0 30823 nmop0 32018 nmfn0 32019 rexunirn 32520 dmrab 32525 iunrnmptss 32588 ressupprn 32702 ordtconnlem1 33870 dya2icoseg2 34243 dya2iocnei 34247 omssubaddlem 34264 omssubadd 34265 satfvsuclem2 35328 satf0 35340 satffunlem1lem2 35371 satffunlem2lem2 35374 rexxfr3dALT 35607 bj-mpomptALT 37085 mptsnunlem 37304 fvineqsneq 37378 rabiun 37553 iundif1 37554 poimir 37613 ismblfin 37621 eldmqs1cossres 38615 erimeq2 38634 prter2 38837 prter3 38838 islshpat 38973 lshpsmreu 39065 islpln5 39492 islvol5 39536 cdlemftr3 40522 dvhb1dimN 40943 dib1dim 41122 mapdpglem3 41632 hdmapglem7a 41884 diophrex 42731 dfsclnbgr6 47730 r19.41dv 48535 |
Copyright terms: Public domain | W3C validator |