MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ra4 Structured version   Visualization version   GIF version

Theorem ra4 3819
Description: Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is the axiom stdpc5 2201 of standard predicate calculus for a restricted domain. See ra4v 3818 for a version requiring fewer axioms. (Contributed by NM, 16-Jan-2004.) (Proof shortened by BJ, 27-Mar-2020.)
Hypothesis
Ref Expression
ra4.1 𝑥𝜑
Assertion
Ref Expression
ra4 (∀𝑥𝐴 (𝜑𝜓) → (𝜑 → ∀𝑥𝐴 𝜓))

Proof of Theorem ra4
StepHypRef Expression
1 ra4.1 . . 3 𝑥𝜑
21r19.21 3140 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
32biimpi 215 1 (∀𝑥𝐴 (𝜑𝜓) → (𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1786  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787  df-ral 3069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator