MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo2 Structured version   Visualization version   GIF version

Theorem rmo2 3834
Description: Alternate definition of restricted "at most one". Note that ∃*𝑥𝐴𝜑 is not equivalent to 𝑦𝐴𝑥𝐴(𝜑𝑥 = 𝑦) (in analogy to reu6 3681); to see this, let 𝐴 be the empty set. However, one direction of this pattern holds; see rmo2i 3835. (Contributed by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
rmo2.1 𝑦𝜑
Assertion
Ref Expression
rmo2 (∃*𝑥𝐴 𝜑 ↔ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem rmo2
StepHypRef Expression
1 df-rmo 3347 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
2 nfv 1915 . . . 4 𝑦 𝑥𝐴
3 rmo2.1 . . . 4 𝑦𝜑
42, 3nfan 1900 . . 3 𝑦(𝑥𝐴𝜑)
54mof 2560 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ ∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦))
6 impexp 450 . . . . 5 (((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → (𝜑𝑥 = 𝑦)))
76albii 1820 . . . 4 (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
8 df-ral 3049 . . . 4 (∀𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥 = 𝑦)))
97, 8bitr4i 278 . . 3 (∀𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴 (𝜑𝑥 = 𝑦))
109exbii 1849 . 2 (∃𝑦𝑥((𝑥𝐴𝜑) → 𝑥 = 𝑦) ↔ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
111, 5, 103bitri 297 1 (∃*𝑥𝐴 𝜑 ↔ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wex 1780  wnf 1784  wcel 2113  ∃*wmo 2535  wral 3048  ∃*wrmo 3346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2146  ax-11 2162  ax-12 2182
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-mo 2537  df-ral 3049  df-rmo 3347
This theorem is referenced by:  rmo2i  3835  rmoanimALT  3842  disjiun  5081  poimirlem2  37682  onsucf1lem  43386
  Copyright terms: Public domain W3C validator