![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rmo2 | Structured version Visualization version GIF version |
Description: Alternate definition of restricted "at most one". Note that ∃*𝑥 ∈ 𝐴𝜑 is not equivalent to ∃𝑦 ∈ 𝐴∀𝑥 ∈ 𝐴(𝜑 → 𝑥 = 𝑦) (in analogy to reu6 3723); to see this, let 𝐴 be the empty set. However, one direction of this pattern holds; see rmo2i 3883. (Contributed by NM, 17-Jun-2017.) |
Ref | Expression |
---|---|
rmo2.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
rmo2 | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 3374 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 | |
3 | rmo2.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | 2, 3 | nfan 1894 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
5 | 4 | mof 2552 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
6 | impexp 449 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) | |
7 | 6 | albii 1813 | . . . 4 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) |
8 | df-ral 3059 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) | |
9 | 7, 8 | bitr4i 277 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) |
10 | 9 | exbii 1842 | . 2 ⊢ (∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ ∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) |
11 | 1, 5, 10 | 3bitri 296 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 ∃wex 1773 Ⅎwnf 1777 ∈ wcel 2098 ∃*wmo 2527 ∀wral 3058 ∃*wrmo 3373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 ax-11 2146 ax-12 2166 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-mo 2529 df-ral 3059 df-rmo 3374 |
This theorem is referenced by: rmo2i 3883 rmoanimALT 3890 disjiun 5139 poimirlem2 37128 onsucf1lem 42729 |
Copyright terms: Public domain | W3C validator |