| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmo2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of restricted "at most one". Note that ∃*𝑥 ∈ 𝐴𝜑 is not equivalent to ∃𝑦 ∈ 𝐴∀𝑥 ∈ 𝐴(𝜑 → 𝑥 = 𝑦) (in analogy to reu6 3709); to see this, let 𝐴 be the empty set. However, one direction of this pattern holds; see rmo2i 3863. (Contributed by NM, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| rmo2.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| rmo2 | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 3359 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 | |
| 3 | rmo2.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 2, 3 | nfan 1899 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 5 | 4 | mof 2562 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
| 6 | impexp 450 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) | |
| 7 | 6 | albii 1819 | . . . 4 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) |
| 8 | df-ral 3052 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) | |
| 9 | 7, 8 | bitr4i 278 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) |
| 10 | 9 | exbii 1848 | . 2 ⊢ (∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦) ↔ ∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) |
| 11 | 1, 5, 10 | 3bitri 297 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2108 ∃*wmo 2537 ∀wral 3051 ∃*wrmo 3358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2539 df-ral 3052 df-rmo 3359 |
| This theorem is referenced by: rmo2i 3863 rmoanimALT 3870 disjiun 5107 poimirlem2 37592 onsucf1lem 43240 |
| Copyright terms: Public domain | W3C validator |