HomeHome Metamath Proof Explorer
Theorem List (p. 39 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 3801-3900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsbcralt 3801* Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.)
((𝐴𝑉𝑦𝐴) → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcrext 3802* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) (Revised by NM, 18-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.)
(𝑦𝐴 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcralg 3803* Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theoremsbcrex 3804* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.)
([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑)
 
Theoremsbcreu 3805* Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 18-Aug-2018.)
([𝐴 / 𝑥]∃!𝑦𝐵 𝜑 ↔ ∃!𝑦𝐵 [𝐴 / 𝑥]𝜑)
 
Theoremreu8nf 3806* Restricted uniqueness using implicit substitution. This version of reu8 3663 uses a nonfreeness hypothesis for 𝑥 and 𝜓 instead of distinct variable conditions. (Contributed by AV, 21-Jan-2022.)
𝑥𝜓    &   𝑥𝜒    &   (𝑥 = 𝑤 → (𝜑𝜒))    &   (𝑤 = 𝑦 → (𝜒𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
 
Theoremsbcabel 3807* Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.)
𝑥𝐵       (𝐴𝑉 → ([𝐴 / 𝑥]{𝑦𝜑} ∈ 𝐵 ↔ {𝑦[𝐴 / 𝑥]𝜑} ∈ 𝐵))
 
Theoremrspsbc 3808* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 2072 and spsbc 3724. See also rspsbca 3809 and rspcsbela 4366. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
 
Theoremrspsbca 3809* Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.)
((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → [𝐴 / 𝑥]𝜑)
 
Theoremrspesbca 3810* Existence form of rspsbca 3809. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑥𝐵 𝜑)
 
Theoremspesbc 3811 Existence form of spsbc 3724. (Contributed by Mario Carneiro, 18-Nov-2016.)
([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑)
 
Theoremspesbcd 3812 form of spsbc 3724. (Contributed by Mario Carneiro, 9-Feb-2017.)
(𝜑[𝐴 / 𝑥]𝜓)       (𝜑 → ∃𝑥𝜓)
 
Theoremsbcth2 3813* A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
(𝑥𝐵𝜑)       (𝐴𝐵[𝐴 / 𝑥]𝜑)
 
Theoremra4v 3814* Version of ra4 3815 with a disjoint variable condition, requiring fewer axioms. This is stdpc5v 1942 for a restricted domain. (Contributed by BJ, 27-Mar-2020.)
(∀𝑥𝐴 (𝜑𝜓) → (𝜑 → ∀𝑥𝐴 𝜓))
 
Theoremra4 3815 Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is the axiom stdpc5 2204 of standard predicate calculus for a restricted domain. See ra4v 3814 for a version requiring fewer axioms. (Contributed by NM, 16-Jan-2004.) (Proof shortened by BJ, 27-Mar-2020.)
𝑥𝜑       (∀𝑥𝐴 (𝜑𝜓) → (𝜑 → ∀𝑥𝐴 𝜓))
 
Theoremrmo2 3816* Alternate definition of restricted "at most one". Note that ∃*𝑥𝐴𝜑 is not equivalent to 𝑦𝐴𝑥𝐴(𝜑𝑥 = 𝑦) (in analogy to reu6 3656); to see this, let 𝐴 be the empty set. However, one direction of this pattern holds; see rmo2i 3817. (Contributed by NM, 17-Jun-2017.)
𝑦𝜑       (∃*𝑥𝐴 𝜑 ↔ ∃𝑦𝑥𝐴 (𝜑𝑥 = 𝑦))
 
Theoremrmo2i 3817* Condition implying restricted "at most one". (Contributed by NM, 17-Jun-2017.)
𝑦𝜑       (∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦) → ∃*𝑥𝐴 𝜑)
 
Theoremrmo3 3818* Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) Avoid ax-13 2372. (Revised by Wolf Lammen, 30-Apr-2023.)
𝑦𝜑       (∃*𝑥𝐴 𝜑 ↔ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremrmob 3819* Consequence of "at most one", using implicit substitution. (Contributed by NM, 2-Jan-2015.) (Revised by NM, 16-Jun-2017.)
(𝑥 = 𝐵 → (𝜑𝜓))    &   (𝑥 = 𝐶 → (𝜑𝜒))       ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓)) → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒)))
 
Theoremrmoi 3820* Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
(𝑥 = 𝐵 → (𝜑𝜓))    &   (𝑥 = 𝐶 → (𝜑𝜒))       ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓) ∧ (𝐶𝐴𝜒)) → 𝐵 = 𝐶)
 
Theoremrmob2 3821* Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019.)
(𝑥 = 𝐵 → (𝜓𝜒))    &   (𝜑𝐵𝐴)    &   (𝜑 → ∃*𝑥𝐴 𝜓)    &   (𝜑𝑥𝐴)    &   (𝜑𝜓)       (𝜑 → (𝑥 = 𝐵𝜒))
 
Theoremrmoi2 3822* Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019.)
(𝑥 = 𝐵 → (𝜓𝜒))    &   (𝜑𝐵𝐴)    &   (𝜑 → ∃*𝑥𝐴 𝜓)    &   (𝜑𝑥𝐴)    &   (𝜑𝜓)    &   (𝜑𝜒)       (𝜑𝑥 = 𝐵)
 
Theoremrmoanim 3823 Introduction of a conjunct into restricted "at most one" quantifier, analogous to moanim 2622. (Contributed by Alexander van der Vekens, 25-Jun-2017.) Avoid ax-10 2139 and ax-11 2156. (Revised by Gino Giotto, 24-Aug-2023.)
𝑥𝜑       (∃*𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝐴 𝜓))
 
TheoremrmoanimALT 3824 Alternate proof of rmoanim 3823, shorter but requiring ax-10 2139 and ax-11 2156. (Contributed by Alexander van der Vekens, 25-Jun-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑥𝜑       (∃*𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝐴 𝜓))
 
Theoremreuan 3825 Introduction of a conjunct into restricted unique existential quantifier, analogous to euan 2623. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
𝑥𝜑       (∃!𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝐴 𝜓))
 
Theorem2reu1 3826* Double restricted existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one, analogous to 2eu1 2652. (Contributed by Alexander van der Vekens, 25-Jun-2017.)
(∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)))
 
Theorem2reu2 3827* Double restricted existential uniqueness, analogous to 2eu2 2654. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
(∃!𝑦𝐵𝑥𝐴 𝜑 → (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ ∃!𝑥𝐴𝑦𝐵 𝜑))
 
2.1.10  Proper substitution of classes for sets into classes
 
Syntaxcsb 3828 Extend class notation to include the proper substitution of a class for a set into another class.
class 𝐴 / 𝑥𝐵
 
Definitiondf-csb 3829* Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3711, to prevent ambiguity. Theorem sbcel1g 4344 shows an example of how ambiguity could arise if we did not use distinguished brackets. When 𝐴 is a proper class, this evaluates to the empty set (see csbprc 4337). Theorem sbccsb 4364 recovers substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.)
𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
 
Theoremcsb2 3830* Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that 𝑥 can be free in 𝐵 but cannot occur in 𝐴. (Contributed by NM, 2-Dec-2013.)
𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
 
Theoremcsbeq1 3831 Analogue of dfsbcq 3713 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
(𝐴 = 𝐵𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
 
Theoremcsbeq1d 3832 Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.)
(𝜑𝐴 = 𝐵)       (𝜑𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐶)
 
Theoremcsbeq2 3833 Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
(∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2d 3834 Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝑥𝜑    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2dv 3835* Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
(𝜑𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
 
Theoremcsbeq2i 3836 Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐵 = 𝐶       𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶
 
Theoremcsbeq12dv 3837* Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023.)
(𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐴 / 𝑥𝐵 = 𝐶 / 𝑥𝐷)
 
Theoremcbvcsbw 3838* Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. Version of cbvcsb 3839 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑦𝐶    &   𝑥𝐷    &   (𝑥 = 𝑦𝐶 = 𝐷)       𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷
 
Theoremcbvcsb 3839 Change bound variables in a class substitution. Interestingly, this does not require any bound variable conditions on 𝐴. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvcsbw 3838 when possible. (Contributed by Jeff Hankins, 13-Sep-2009.) (Revised by Mario Carneiro, 11-Dec-2016.) (New usage is discouraged.)
𝑦𝐶    &   𝑥𝐷    &   (𝑥 = 𝑦𝐶 = 𝐷)       𝐴 / 𝑥𝐶 = 𝐴 / 𝑦𝐷
 
Theoremcbvcsbv 3840* Change the bound variable of a proper substitution into a class using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
(𝑥 = 𝑦𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶
 
Theoremcsbid 3841 Analogue of sbid 2251 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
𝑥 / 𝑥𝐴 = 𝐴
 
Theoremcsbeq1a 3842 Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
(𝑥 = 𝐴𝐵 = 𝐴 / 𝑥𝐵)
 
Theoremcsbcow 3843* Composition law for chained substitutions into a class. Version of csbco 3844 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 10-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.)
𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
 
Theoremcsbco 3844* Composition law for chained substitutions into a class. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker csbcow 3843 when possible. (Contributed by NM, 10-Nov-2005.) (New usage is discouraged.)
𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
 
Theoremcsbtt 3845 Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)
 
Theoremcsbconstgf 3846 Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by NM, 10-Nov-2005.)
𝑥𝐵       (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
 
Theoremcsbconstg 3847* Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3846 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2173. (Revised by Gino Giotto, 15-Oct-2024.)
(𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
 
TheoremcsbconstgOLD 3848* Obsolete version of csbconstg 3847 as of 15-Oct-2024. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
 
Theoremcsbgfi 3849 Substitution for a variable not free in a class does not affect it, in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019.)
𝐴 ∈ V    &   𝑥𝐵       𝐴 / 𝑥𝐵 = 𝐵
 
Theoremcsbconstgi 3850* The proper substitution of a class for a variable in another variable does not modify it, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
𝐴 ∈ V       𝐴 / 𝑥𝑦 = 𝑦
 
Theoremnfcsb1d 3851 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
(𝜑𝑥𝐴)       (𝜑𝑥𝐴 / 𝑥𝐵)
 
Theoremnfcsb1 3852 Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴       𝑥𝐴 / 𝑥𝐵
 
Theoremnfcsb1v 3853* Bound-variable hypothesis builder for substitution into a class. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
𝑥𝐴 / 𝑥𝐵
 
Theoremnfcsbd 3854 Deduction version of nfcsb 3856. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)       (𝜑𝑥𝐴 / 𝑦𝐵)
 
Theoremnfcsbw 3855* Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3856 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 12-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑥𝐴    &   𝑥𝐵       𝑥𝐴 / 𝑦𝐵
 
Theoremnfcsb 3856 Bound-variable hypothesis builder for substitution into a class. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfcsbw 3855 when possible. (Contributed by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.)
𝑥𝐴    &   𝑥𝐵       𝑥𝐴 / 𝑦𝐵
 
Theoremcsbhypf 3857* Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 3481 for class substitution version. (Contributed by NM, 19-Dec-2008.)
𝑥𝐴    &   𝑥𝐶    &   (𝑥 = 𝐴𝐵 = 𝐶)       (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)
 
Theoremcsbiebt 3858* Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3862.) (Contributed by NM, 11-Nov-2005.)
((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
 
Theoremcsbiedf 3859* Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.)
𝑥𝜑    &   (𝜑𝑥𝐶)    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbieb 3860* Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
𝐴 ∈ V    &   𝑥𝐶       (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbiebg 3861* Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑥𝐶       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
 
Theoremcsbiegf 3862* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
(𝐴𝑉𝑥𝐶)    &   (𝑥 = 𝐴𝐵 = 𝐶)       (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbief 3863* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
𝐴 ∈ V    &   𝑥𝐶    &   (𝑥 = 𝐴𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐶
 
Theoremcsbie 3864* Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.)
𝐴 ∈ V    &   (𝑥 = 𝐴𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐶
 
TheoremcsbieOLD 3865* Obsolete version of csbie 3864 as of 15-Oct-2024. (Contributed by AV, 2-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V    &   (𝑥 = 𝐴𝐵 = 𝐶)       𝐴 / 𝑥𝐵 = 𝐶
 
Theoremcsbied 3866* Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐶)
 
TheoremcsbiedOLD 3867* Obsolete version of csbied 3866 as of 15-Oct-2024. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴𝑉)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)       (𝜑𝐴 / 𝑥𝐵 = 𝐶)
 
Theoremcsbied2 3868* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝐴𝑉)    &   (𝜑𝐴 = 𝐵)    &   ((𝜑𝑥 = 𝐵) → 𝐶 = 𝐷)       (𝜑𝐴 / 𝑥𝐶 = 𝐷)
 
Theoremcsbie2t 3869* Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3870). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.)
𝐴 ∈ V    &   𝐵 ∈ V       (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷)
 
Theoremcsbie2 3870* Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.)
𝐴 ∈ V    &   𝐵 ∈ V    &   ((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)       𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷
 
Theoremcsbie2g 3871* Conversion of implicit substitution to explicit class substitution. This version of csbie 3864 avoids a disjointness condition on 𝑥, 𝐴 and 𝑥, 𝐷 by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.)
(𝑥 = 𝑦𝐵 = 𝐶)    &   (𝑦 = 𝐴𝐶 = 𝐷)       (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐷)
 
Theoremcbvrabcsfw 3872* Version of cbvrabcsf 3876 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Andrew Salmon, 13-Jul-2011.) (Revised by Gino Giotto, 26-Jan-2024.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
 
Theoremcbvralcsf 3873 A more general version of cbvralf 3361 that doesn't require 𝐴 and 𝐵 to be distinct from 𝑥 or 𝑦. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Andrew Salmon, 13-Jul-2011.) (New usage is discouraged.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓)
 
Theoremcbvrexcsf 3874 A more general version of cbvrexf 3362 that has no distinct variable restrictions. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.) (New usage is discouraged.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓)
 
Theoremcbvreucsf 3875 A more general version of cbvreuv 3379 that has no distinct variable restrictions. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Andrew Salmon, 13-Jul-2011.) (New usage is discouraged.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐵 𝜓)
 
Theoremcbvrabcsf 3876 A more general version of cbvrab 3415 with no distinct variable restrictions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Andrew Salmon, 13-Jul-2011.) (New usage is discouraged.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
 
Theoremcbvralv2 3877* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.)
(𝑥 = 𝑦 → (𝜓𝜒))    &   (𝑥 = 𝑦𝐴 = 𝐵)       (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒)
 
Theoremcbvrexv2 3878* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.)
(𝑥 = 𝑦 → (𝜓𝜒))    &   (𝑥 = 𝑦𝐴 = 𝐵)       (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 𝜒)
 
Theoremrspc2vd 3879* Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class 𝐷 for the second set variable 𝑦 may depend on the first set variable 𝑥. (Contributed by AV, 29-Mar-2021.)
(𝑥 = 𝐴 → (𝜃𝜒))    &   (𝑦 = 𝐵 → (𝜒𝜓))    &   (𝜑𝐴𝐶)    &   ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐸)    &   (𝜑𝐵𝐸)       (𝜑 → (∀𝑥𝐶𝑦𝐷 𝜃𝜓))
 
2.1.11  Define basic set operations and relations
 
Syntaxcdif 3880 Extend class notation to include class difference (read: "𝐴 minus 𝐵").
class (𝐴𝐵)
 
Syntaxcun 3881 Extend class notation to include union of two classes (read: "𝐴 union 𝐵").
class (𝐴𝐵)
 
Syntaxcin 3882 Extend class notation to include the intersection of two classes (read: "𝐴 intersect 𝐵").
class (𝐴𝐵)
 
Syntaxwss 3883 Extend wff notation to include the subclass relation. This is read "𝐴 is a subclass of 𝐵 " or "𝐵 includes 𝐴". When 𝐴 exists as a set, it is also read "𝐴 is a subset of 𝐵".
wff 𝐴𝐵
 
Syntaxwpss 3884 Extend wff notation with proper subclass relation.
wff 𝐴𝐵
 
Theoremdifjust 3885* Soundness justification theorem for df-dif 3886. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
 
Definitiondf-dif 3886* Define class difference, also called relative complement. Definition 5.12 of [TakeutiZaring] p. 20. For example, ({1, 3} ∖ {1, 8}) = {3} (ex-dif 28688). Contrast this operation with union (𝐴𝐵) (df-un 3888) and intersection (𝐴𝐵) (df-in 3890). Several notations are used in the literature; we chose the convention used in Definition 5.3 of [Eisenberg] p. 67 instead of the more common minus sign to reserve the latter for later use in, e.g., arithmetic. We will use the terminology "𝐴 excludes 𝐵 " to mean 𝐴𝐵. We will use "𝐵 is removed from 𝐴 " to mean 𝐴 ∖ {𝐵} i.e. the removal of an element or equivalently the exclusion of a singleton. (Contributed by NM, 29-Apr-1994.)
(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
 
Theoremunjust 3887* Soundness justification theorem for df-un 3888. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
 
Definitiondf-un 3888* Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∪ {1, 8}) = {1, 3, 8} (ex-un 28689). Contrast this operation with difference (𝐴𝐵) (df-dif 3886) and intersection (𝐴𝐵) (df-in 3890). For an alternate definition in terms of class difference, requiring no dummy variables, see dfun2 4190. For union defined in terms of intersection, see dfun3 4196. (Contributed by NM, 23-Aug-1993.)
(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
 
Theoreminjust 3889* Soundness justification theorem for df-in 3890. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
 
Definitiondf-in 3890* Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, ({1, 3} ∩ {1, 8}) = {1} (ex-in 28690). Contrast this operation with union (𝐴𝐵) (df-un 3888) and difference (𝐴𝐵) (df-dif 3886). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 4191 and dfin4 4198. For intersection defined in terms of union, see dfin3 4197. (Contributed by NM, 29-Apr-1994.)
(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
 
Theoremdfin5 3891* Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
(𝐴𝐵) = {𝑥𝐴𝑥𝐵}
 
Theoremdfdif2 3892* Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
(𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
 
Theoremeldif 3893 Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.)
(𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
 
Theoremeldifd 3894 If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3893. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)    &   (𝜑 → ¬ 𝐴𝐶)       (𝜑𝐴 ∈ (𝐵𝐶))
 
Theoremeldifad 3895 If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3893. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 ∈ (𝐵𝐶))       (𝜑𝐴𝐵)
 
Theoremeldifbd 3896 If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3893. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 ∈ (𝐵𝐶))       (𝜑 → ¬ 𝐴𝐶)
 
Theoremelneeldif 3897 The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023.)
((𝑋𝐴𝑌 ∈ (𝐵𝐴)) → 𝑋𝑌)
 
Theoremvelcomp 3898 Characterization of setvar elements of the complement of a class. (Contributed by Andrew Salmon, 15-Jul-2011.)
(𝑥 ∈ (V ∖ 𝐴) ↔ ¬ 𝑥𝐴)
 
Theoremelin 3899 Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.)
(𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
 
2.1.12  Subclasses and subsets
 
Definitiondf-ss 3900 Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. For example, {1, 2} ⊆ {1, 2, 3} (ex-ss 28692). Note that 𝐴𝐴 (proved in ssid 3939). Contrast this relationship with the relationship 𝐴𝐵 (as will be defined in df-pss 3902). For a more traditional definition, but requiring a dummy variable, see dfss2 3903. Other possible definitions are given by dfss3 3905, dfss4 4189, sspss 4030, ssequn1 4110, ssequn2 4113, sseqin2 4146, and ssdif0 4294.

We prefer the label "ss" ("subset") for , despite the fact that it applies to classes. It is much more common to refer to this as the subset relation than subclass, especially since most of the time the arguments are in fact sets (and for pragmatic reasons we don't want to need to use different operations for sets). The way set.mm is set up, many things are technically classes despite morally (and provably) being sets, like 1 (cf. df-1 10810 and 1ex 10902) or ( cf. df-r 10812 and reex 10893). This has to do with the fact that there are no "set expressions": classes are expressions but there are only set variables in set.mm (cf. https://us.metamath.org/downloads/grammar-ambiguity.txt 10893). This is why we use both for subclass relations and for subset relations and call it "subset". (Contributed by NM, 27-Apr-1994.)

(𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >