![]() |
Metamath
Proof Explorer Theorem List (p. 39 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rru 3801* |
Relative version of Russell's paradox ru 3802 (which corresponds to the
case 𝐴 = V).
Originally a subproof in pwnss 5370. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid df-nel 3053. (Revised by Steven Nguyen, 23-Nov-2022.) Reduce axiom usage. (Revised by GG, 30-Aug-2024.) |
⊢ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 | ||
Theorem | ru 3802 |
Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.
In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 𝐴 ∈ V, asserted that any collection of sets 𝐴 is a set i.e. belongs to the universe V of all sets. In particular, by substituting {𝑥 ∣ 𝑥 ∉ 𝑥} (the "Russell class") for 𝐴, it asserted {𝑥 ∣ 𝑥 ∉ 𝑥} ∈ V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system, which Frege acknowledged in the second edition of his Grundgesetze der Arithmetik. In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom ssex 5339 asserting that 𝐴 is a set only when it is smaller than some other set 𝐵. However, Zermelo was then faced with a "chicken and egg" problem of how to show 𝐵 is a set, leading him to introduce the set-building axioms of Null Set 0ex 5325, Pairing prex 5452, Union uniex 7776, Power Set pwex 5398, and Infinity omex 9712 to give him some starting sets to work with (all of which, before Russell's Paradox, were immediate consequences of Frege's Comprehension). In 1922 Fraenkel strengthened the Subset Axiom with our present Replacement Axiom funimaex 6666 (whose modern formalization is due to Skolem, also in 1922). Thus, in a very real sense Russell's Paradox spawned the invention of ZF set theory and completely revised the foundations of mathematics! Another mainstream formalization of set theory, devised by von Neumann, Bernays, and Goedel, uses class variables rather than setvar variables as its primitives. The axiom system NBG in [Mendelson] p. 225 is suitable for a Metamath encoding. NBG is a conservative extension of ZF in that it proves exactly the same theorems as ZF that are expressible in the language of ZF. An advantage of NBG is that it is finitely axiomatizable - the Axiom of Replacement can be broken down into a finite set of formulas that eliminate its wff metavariable. Finite axiomatizability is required by some proof languages (although not by Metamath). There is a stronger version of NBG called Morse-Kelley (axiom system MK in [Mendelson] p. 287). Russell himself continued in a different direction, avoiding the paradox with his "theory of types". Quine extended Russell's ideas to formulate his New Foundations set theory (axiom system NF of [Quine] p. 331). In NF, the collection of all sets is a set, contrarily to ZF and NBG set theories. Russell's paradox has other consequences: when classes are too large (beyond the size of those used in standard mathematics), the axiom of choice ac4 10544 and Cantor's theorem canth 7401 are provably false. (See ncanth 7402 for some intuition behind the latter.) Recent results (as of 2014) seem to show that NF is equiconsistent to Z (ZF in which ax-sep 5317 replaces ax-rep 5303) with ax-sep 5317 restricted to only bounded quantifiers. NF is finitely axiomatizable and can be encoded in Metamath using the axioms from T. Hailperin, "A set of axioms for logic", J. Symb. Logic 9:1-19 (1944). Under our ZF set theory, every set is a member of the Russell class by elirrv 9665 (derived from the Axiom of Regularity), so for us the Russell class equals the universe V (Theorem ruv 9671). See ruALT 9672 for an alternate proof of ru 3802 derived from that fact. (Contributed by NM, 7-Aug-1994.) Remove use of ax-13 2380. (Revised by BJ, 12-Oct-2019.) Remove use of ax-10 2141, ax-11 2158, and ax-12 2178. (Revised by BTernaryTau, 20-Jun-2025.) (Proof modification is discouraged.) |
⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
Theorem | ruOLD 3803 | Obsolete version of ru 3802 as of 20-Jun-2025. (Contributed by NM, 7-Aug-1994.) Remove use of ax-13 2380. (Revised by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
Syntax | wsbc 3804 | Extend wff notation to include the proper substitution of a class for a set. Read this notation as "the proper substitution of class 𝐴 for setvar variable 𝑥 in wff 𝜑". |
wff [𝐴 / 𝑥]𝜑 | ||
Definition | df-sbc 3805 |
Define the proper substitution of a class for a set.
When 𝐴 is a proper class, our definition evaluates to false (see sbcex 3814). This is somewhat arbitrary: we could have, instead, chosen the conclusion of sbc6 3836 for our definition, whose right-hand side always evaluates to true for proper classes. Our definition also does not produce the same results as discussed in the proof of Theorem 6.6 of [Quine] p. 42 (although Theorem 6.6 itself does hold, as shown by dfsbcq 3806 below). For example, if 𝐴 is a proper class, Quine's substitution of 𝐴 for 𝑦 in 0 ∈ 𝑦 evaluates to 0 ∈ 𝐴 rather than our falsehood. (This can be seen by substituting 𝐴, 𝑦, and 0 for alpha, beta, and gamma in Subcase 1 of Quine's discussion on p. 42.) Unfortunately, Quine's definition requires a recursive syntactic breakdown of 𝜑, and it does not seem possible to express it with a single closed formula. If we did not want to commit to any specific proper class behavior, we could use this definition only to prove Theorem dfsbcq 3806, which holds for both our definition and Quine's, and from which we can derive a weaker version of df-sbc 3805 in the form of sbc8g 3812. However, the behavior of Quine's definition at proper classes is similarly arbitrary, and for practical reasons (to avoid having to prove sethood of 𝐴 in every use of this definition) we allow direct reference to df-sbc 3805 and assert that [𝐴 / 𝑥]𝜑 is always false when 𝐴 is a proper class. Theorem sbc2or 3813 shows the apparently "strongest" statement we can make regarding behavior at proper classes if we start from dfsbcq 3806. The related definition df-csb 3922 defines proper substitution into a class variable (as opposed to a wff variable). (Contributed by NM, 14-Apr-1995.) (Revised by NM, 25-Dec-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | ||
Theorem | dfsbcq 3806 |
Proper substitution of a class for a set in a wff given equal classes.
This is the essence of the sixth axiom of Frege, specifically Proposition
52 of [Frege1879] p. 50.
This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3805 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3807 instead of df-sbc 3805. (dfsbcq2 3807 is needed because unlike Quine we do not overload the df-sb 2065 syntax.) As a consequence of these theorems, we can derive sbc8g 3812, which is a weaker version of df-sbc 3805 that leaves substitution undefined when 𝐴 is a proper class. However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3812, so we will allow direct use of df-sbc 3805 after Theorem sbc2or 3813 below. Proper substitution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) | ||
Theorem | dfsbcq2 3807 | This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 2065 and substitution for class variables df-sbc 3805. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3806. (Contributed by NM, 31-Dec-2016.) |
⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbsbc 3808 | Show that df-sb 2065 and df-sbc 3805 are equivalent when the class term 𝐴 in df-sbc 3805 is a setvar variable. This theorem lets us reuse theorems based on df-sb 2065 for proofs involving df-sbc 3805. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
Theorem | sbceq1d 3809 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜓)) | ||
Theorem | sbceq1dd 3810 | Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) ⇒ ⊢ (𝜑 → [𝐵 / 𝑥]𝜓) | ||
Theorem | sbceqbid 3811* | Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) | ||
Theorem | sbc8g 3812 | This is the closest we can get to df-sbc 3805 if we start from dfsbcq 3806 (see its comments) and dfsbcq2 3807. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | ||
Theorem | sbc2or 3813* | The disjunction of two equivalences for class substitution does not require a class existence hypothesis. This theorem tells us that there are only 2 possibilities for [𝐴 / 𝑥]𝜑 behavior at proper classes, matching the sbc5 3832 (false) and sbc6 3836 (true) conclusions. This is interesting since dfsbcq 3806 and dfsbcq2 3807 (from which it is derived) do not appear to say anything obvious about proper class behavior. Note that this theorem does not tell us that it is always one or the other at proper classes; it could "flip" between false (the first disjunct) and true (the second disjunct) as a function of some other variable 𝑦 that 𝜑 or 𝐴 may contain. (Contributed by NM, 11-Oct-2004.) (Proof modification is discouraged.) |
⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
Theorem | sbcex 3814 | By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | ||
Theorem | sbceq1a 3815 | Equality theorem for class substitution. Class version of sbequ12 2252. (Contributed by NM, 26-Sep-2003.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbceq2a 3816 | Equality theorem for class substitution. Class version of sbequ12r 2253. (Contributed by NM, 4-Jan-2017.) |
⊢ (𝐴 = 𝑥 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | spsbc 3817 | Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. This is Frege's ninth axiom per Proposition 58 of [Frege1879] p. 51. See also stdpc4 2068 and rspsbc 3901. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | ||
Theorem | spsbcd 3818 | Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 2068 and rspsbc 3901. (Contributed by Mario Carneiro, 9-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥𝜓) ⇒ ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | ||
Theorem | sbcth 3819 | A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
⊢ 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcthdv 3820* | Deduction version of sbcth 3819. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜓) | ||
Theorem | sbcid 3821 | An identity theorem for substitution. See sbid 2256. (Contributed by Mario Carneiro, 18-Feb-2017.) |
⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | nfsbc1d 3822 | Deduction version of nfsbc1 3823. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) | ||
Theorem | nfsbc1 3823 | Bound-variable hypothesis builder for class substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
Theorem | nfsbc1v 3824* | Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | ||
Theorem | nfsbcdw 3825* | Deduction version of nfsbcw 3826. Version of nfsbcd 3828 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 23-Nov-2005.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | ||
Theorem | nfsbcw 3826* | Bound-variable hypothesis builder for class substitution. Version of nfsbc 3829 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 7-Sep-2014.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 | ||
Theorem | sbccow 3827* | A composition law for class substitution. Version of sbcco 3830 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 26-Sep-2003.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
Theorem | nfsbcd 3828 | Deduction version of nfsbc 3829. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker nfsbcdw 3825 when possible. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | ||
Theorem | nfsbc 3829 | Bound-variable hypothesis builder for class substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker nfsbcw 3826 when possible. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 | ||
Theorem | sbcco 3830* | A composition law for class substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker sbccow 3827 when possible. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) (New usage is discouraged.) |
⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcco2 3831* | A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | ||
Theorem | sbc5 3832* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by SN, 2-Sep-2024.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
Theorem | sbc5ALT 3833* | Alternate proof of sbc5 3832. This proof helps show how clelab 2890 works, since it is equivalent but shorter thanks to now-available library theorems like vtoclbg 3569 and isset 3502. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | ||
Theorem | sbc6g 3834* | An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by SN, 5-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
Theorem | sbc6gOLD 3835* | Obsolete version of sbc6g 3834 as of 5-Oct-2024. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | ||
Theorem | sbc6 3836* | An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) | ||
Theorem | sbc7 3837* | An equivalence for class substitution in the spirit of df-clab 2718. Note that 𝑥 and 𝐴 don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | cbvsbcw 3838* | Change bound variables in a wff substitution. Version of cbvsbc 3840 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Jeff Hankins, 19-Sep-2009.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
Theorem | cbvsbcvw 3839* | Change the bound variable of a class substitution using implicit substitution. Version of cbvsbcv 3841 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 30-Sep-2008.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
Theorem | cbvsbc 3840 | Change bound variables in a wff substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker cbvsbcw 3838 when possible. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
Theorem | cbvsbcv 3841* | Change the bound variable of a class substitution using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker cbvsbcvw 3839 when possible. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) | ||
Theorem | sbciegft 3842* | Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3844.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) (Proof shortened by SN, 14-May-2025.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbciegftOLD 3843* | Obsolete version of sbciegft 3842 as of 14-May-2025. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbciegf 3844* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbcieg 3845* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) Avoid ax-10 2141, ax-12 2178. (Revised by GG, 12-Oct-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbciegOLD 3846* | Obsolete version of sbcieg 3845 as of 12-Oct-2024. (Contributed by NM, 10-Nov-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | ||
Theorem | sbcie2g 3847* | Conversion of implicit substitution to explicit class substitution. This version of sbcie 3848 avoids a disjointness condition on 𝑥, 𝐴 by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐴 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜒)) | ||
Theorem | sbcie 3848* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | ||
Theorem | sbciedf 3849* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜒) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | sbcied 3850* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) Avoid ax-10 2141, ax-12 2178. (Revised by GG, 12-Oct-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | sbciedOLD 3851* | Obsolete version of sbcied 3850 as of 12-Oct-2024. (Contributed by NM, 13-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | sbcied2 3852* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | elrabsf 3853 | Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 3704 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) | ||
Theorem | eqsbc1 3854* | Substitution for the left-hand side in an equality. Class version of eqsb1 2870. (Contributed by Andrew Salmon, 29-Jun-2011.) Avoid ax-13 2380. (Revised by Wolf Lammen, 29-Apr-2023.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | sbcng 3855 | Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcimg 3856 | Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcan 3857 | Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcor 3858 | Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcbig 3859 | Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcn1 3860 | Move negation in and out of class substitution. One direction of sbcng 3855 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥] ¬ 𝜑 → ¬ [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcim1 3861 | Distribution of class substitution over implication. One direction of sbcimg 3856 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) Avoid ax-10 2141, ax-12 2178. (Revised by SN, 26-Oct-2024.) |
⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcim1OLD 3862 | Obsolete version of sbcim1 3861 as of 26-Oct-2024. (Contributed by NM, 17-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcbid 3863 | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcbidv 3864* | Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2178. (Revised by GG, 1-Dec-2023.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcbii 3865 | Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) | ||
Theorem | sbcbi1 3866 | Distribution of class substitution over biconditional. One direction of sbcbig 3859 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcbi2 3867 | Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) (Proof shortened by Wolf Lammen, 4-May-2023.) Avoid ax-10 2141, ax-12 2178. (Revised by Steven Nguyen, 5-May-2024.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) | ||
Theorem | sbcal 3868* | Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 18-Aug-2018.) |
⊢ ([𝐴 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑) | ||
Theorem | sbcex2 3869* | Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) (Revised by NM, 18-Aug-2018.) |
⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) | ||
Theorem | sbceqal 3870* | Class version of one implication of equvelv 2030. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by SN, 26-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | ||
Theorem | sbceqalOLD 3871* | Obsolete version of sbceqal 3870 as of 26-Oct-2024. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | ||
Theorem | sbeqalb 3872* | Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.) |
⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ∧ ∀𝑥(𝜑 ↔ 𝑥 = 𝐵)) → 𝐴 = 𝐵)) | ||
Theorem | eqsbc2 3873* | Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) | ||
Theorem | sbc3an 3874 | Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.) |
⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcel1v 3875* | Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) Avoid ax-13 2380. (Revised by Wolf Lammen, 30-Apr-2023.) |
⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) | ||
Theorem | sbcel2gv 3876* | Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐵 ∈ 𝑉 → ([𝐵 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | ||
Theorem | sbcel21v 3877* | Class substitution into a membership relation. One direction of sbcel2gv 3876 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
⊢ ([𝐵 / 𝑥]𝐴 ∈ 𝑥 → 𝐴 ∈ 𝐵) | ||
Theorem | sbcimdv 3878* | Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1808). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) Reduce axiom usage. (Revised by GG, 12-Oct-2024.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbcimdvOLD 3879* | Obsolete version of sbcimdv 3878 as of 12-Oct-2024. (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) | ||
Theorem | sbctt 3880 | Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbcgf 3881 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbc19.21g 3882 | Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝐴 / 𝑥]𝜓))) | ||
Theorem | sbcg 3883* | Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3881. (Contributed by Alan Sare, 10-Nov-2012.) Reduce axiom usage. (Revised by GG, 12-Oct-2024.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbcgOLD 3884* | Obsolete version of sbcg 3883 as of 12-Oct-2024. (Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbcgfi 3885 | Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | sbc2iegf 3886* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ Ⅎ𝑥 𝐵 ∈ 𝑊 & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) | ||
Theorem | sbc2ie 3887* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) (Proof shortened by GG, 12-Oct-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) | ||
Theorem | sbc2ieOLD 3888* | Obsolete version of sbc2ie 3887 as of 12-Oct-2024. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) | ||
Theorem | sbc2iedv 3889* | Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) | ||
Theorem | sbc3ie 3890* | Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) | ||
Theorem | sbccomlem 3891* | Lemma for sbccom 3893. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.) Avoid ax-10 2141, ax-12 2178. (Revised by SN, 20-Aug-2025.) |
⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccomlemOLD 3892* | Obsolete version of sbccomlem 3891 as of 20-Aug-2025. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom 3893* | Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.) |
⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbcralt 3894* | Interchange class substitution and restricted quantifier. (Contributed by NM, 1-Mar-2008.) (Revised by David Abernethy, 22-Feb-2010.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑦𝐴) → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcrext 3895* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) (Revised by NM, 18-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.) |
⊢ (Ⅎ𝑦𝐴 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcralg 3896* | Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | sbcrex 3897* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
⊢ ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) | ||
Theorem | sbcreu 3898* | Interchange class substitution and restricted unique existential quantifier. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 18-Aug-2018.) |
⊢ ([𝐴 / 𝑥]∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) | ||
Theorem | reu8nf 3899* | Restricted uniqueness using implicit substitution. This version of reu8 3755 uses a nonfreeness hypothesis for 𝑥 and 𝜓 instead of distinct variable conditions. (Contributed by AV, 21-Jan-2022.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) & ⊢ (𝑤 = 𝑦 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | ||
Theorem | sbcabel 3900* | Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]{𝑦 ∣ 𝜑} ∈ 𝐵 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ∈ 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |