Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralcom13 | Structured version Visualization version GIF version |
Description: Swap first and third restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.) |
Ref | Expression |
---|---|
ralcom13 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3166 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 𝜑) | |
2 | ralcom 3166 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝜑) | |
3 | 2 | ralbii 3092 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝜑) |
4 | ralcom 3166 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) | |
5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-11 2154 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |