| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralcom13OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of ralcom13 3279 as of 2-Jan-2025. (Contributed by AV, 3-Dec-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ralcom13OLD | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 3274 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 𝜑) | |
| 2 | ralcom 3274 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝜑) | |
| 3 | 2 | ralbii 3081 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝜑) |
| 4 | ralcom 3274 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-11 2156 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ral 3051 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |