MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralcom13OLD Structured version   Visualization version   GIF version

Theorem ralcom13OLD 3277
Description: Obsolete version of ralcom13 3276 as of 2-Jan-2025. (Contributed by AV, 3-Dec-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ralcom13OLD (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑧,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑧)

Proof of Theorem ralcom13OLD
StepHypRef Expression
1 ralcom 3271 . 2 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑦𝐵𝑥𝐴𝑧𝐶 𝜑)
2 ralcom 3271 . . 3 (∀𝑥𝐴𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑥𝐴 𝜑)
32ralbii 3093 . 2 (∀𝑦𝐵𝑥𝐴𝑧𝐶 𝜑 ↔ ∀𝑦𝐵𝑧𝐶𝑥𝐴 𝜑)
4 ralcom 3271 . 2 (∀𝑦𝐵𝑧𝐶𝑥𝐴 𝜑 ↔ ∀𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
51, 3, 43bitri 297 1 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-11 2155
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-ral 3062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator