|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ralrot3 | Structured version Visualization version GIF version | ||
| Description: Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| ralrot3 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralcom 3288 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝜑) | |
| 2 | 1 | ralbii 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝜑) | 
| 3 | ralcom 3288 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∀wral 3060 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-11 2156 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ral 3061 | 
| This theorem is referenced by: ralcom13 3293 isdomn4r 20720 rmodislmodlem 20928 rmodislmod 20929 isclmp 25131 addsprop 28010 negsprop 28068 mulsprop 28157 ntrneikb 44112 ntrneixb 44113 | 
| Copyright terms: Public domain | W3C validator |