![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrot3 | Structured version Visualization version GIF version |
Description: Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.) |
Ref | Expression |
---|---|
ralrot3 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3295 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝜑) | |
2 | 1 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝜑) |
3 | ralcom 3295 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-11 2158 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 |
This theorem is referenced by: ralcom13 3300 isdomn4r 20741 rmodislmodlem 20949 rmodislmod 20950 rmodislmodOLD 20951 isclmp 25149 addsprop 28027 negsprop 28085 mulsprop 28174 ntrneikb 44056 ntrneixb 44057 |
Copyright terms: Public domain | W3C validator |