| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrot3 | Structured version Visualization version GIF version | ||
| Description: Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.) |
| Ref | Expression |
|---|---|
| ralrot3 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom 3274 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝜑) | |
| 2 | 1 | ralbii 3083 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | ralcom 3274 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝐶 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑧 ∈ 𝐶 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3053 |
| This theorem is referenced by: ralcom13 3279 isdomn4r 20684 rmodislmodlem 20891 rmodislmod 20892 isclmp 25053 addsprop 27940 negsprop 27998 mulsprop 28090 ntrneikb 44085 ntrneixb 44086 |
| Copyright terms: Public domain | W3C validator |