MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrot3 Structured version   Visualization version   GIF version

Theorem ralrot3 3261
Description: Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.)
Assertion
Ref Expression
ralrot3 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝜑)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑥,𝐶   𝑦,𝐶   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑧)

Proof of Theorem ralrot3
StepHypRef Expression
1 ralcom 3258 . . 3 (∀𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑦𝐵 𝜑)
21ralbii 3076 . 2 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑥𝐴𝑧𝐶𝑦𝐵 𝜑)
3 ralcom 3258 . 2 (∀𝑥𝐴𝑧𝐶𝑦𝐵 𝜑 ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝜑)
42, 3bitri 275 1 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-11 2159
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-ral 3046
This theorem is referenced by:  ralcom13  3262  isdomn4r  20627  rmodislmodlem  20855  rmodislmod  20856  isclmp  25017  addsprop  27912  negsprop  27970  mulsprop  28062  ntrneikb  44106  ntrneixb  44107
  Copyright terms: Public domain W3C validator