Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralcom | Structured version Visualization version GIF version |
Description: Commutation of restricted universal quantifiers. See ralcom2 3291 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3291 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcom | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomst 465 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
2 | 1 | 2albii 1823 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
3 | alcom 2157 | . . 3 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
4 | 2, 3 | bitri 274 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
5 | r2al 3119 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | |
6 | r2al 3119 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∈ wcel 2107 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-11 2155 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3070 |
This theorem is referenced by: rexcom 3235 ralcom13 3287 ralrot3 3289 2reu4lem 4457 ssint 4896 iinrab2 5000 disjxun 5073 reusv3 5329 cnvpo 6194 cnvso 6195 dfpo2 6203 fununi 6516 isocnv2 7211 dfsmo2 8187 tz7.48lem 8281 ixpiin 8721 boxriin 8737 dedekind 11147 rexfiuz 15068 gcdcllem1 16215 mreacs 17376 comfeq 17424 catpropd 17427 isnsg2 18793 cntzrec 18949 oppgsubm 18978 opprirred 19953 opprsubrg 20054 rmodislmodlem 20199 rmodislmod 20200 rmodislmodOLD 20201 islindf4 21054 cpmatmcllem 21876 tgss2 22146 ist1-2 22507 kgencn 22716 ptcnplem 22781 cnmptcom 22838 fbun 23000 cnflf 23162 fclsopn 23174 cnfcf 23202 isclmp 24269 isncvsngp 24322 caucfil 24456 ovolgelb 24653 dyadmax 24771 ftc1a 25210 ulmcau 25563 perpcom 27083 colinearalg 27287 uhgrvd00 27910 pthdlem2lem 28144 frgrwopregbsn 28690 phoeqi 29228 ho02i 30200 hoeq2 30202 adjsym 30204 cnvadj 30263 mddmd2 30680 cdj3lem3b 30811 mgccnv 31286 cvmlift2lem12 33285 elpotr 33766 noetasuplem4 33948 conway 34002 cofcutr 34101 fvineqsnf1 35590 poimirlem29 35815 heicant 35821 ispsubsp2 37767 fsuppind 40286 ntrclsiso 41684 ntrneiiso 41708 ntrneik2 41709 ntrneix2 41710 ntrneik3 41713 ntrneix3 41714 ntrneik13 41715 ntrneix13 41716 ntrneik4w 41717 imo72b2 41790 tratrb 42163 hbra2VD 42487 tratrbVD 42488 |
Copyright terms: Public domain | W3C validator |