![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralcom | Structured version Visualization version GIF version |
Description: Commutation of restricted universal quantifiers. See ralcom2 3385 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3385 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcom | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomst 464 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
2 | 1 | 2albii 1818 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
3 | alcom 2160 | . . 3 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
5 | r2al 3201 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | |
6 | r2al 3201 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-11 2158 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 |
This theorem is referenced by: rexcom 3296 ralrot3 3299 ralcom13 3300 ralcom13OLD 3301 2reu4lem 4545 ssint 4988 iinrab2 5093 disjxun 5164 reusv3 5423 cnvpo 6318 cnvso 6319 dfpo2 6327 fununi 6653 isocnv2 7367 dfsmo2 8403 tz7.48lem 8497 ixpiin 8982 boxriin 8998 dedekind 11453 rexfiuz 15396 gcdcllem1 16545 mreacs 17716 comfeq 17764 catpropd 17767 isnsg2 19196 cntzrec 19376 oppgsubm 19405 opprirred 20448 opprsubrng 20585 opprsubrg 20621 opprdomnb 20739 rmodislmodlem 20949 rmodislmod 20950 rmodislmodOLD 20951 islindf4 21881 cpmatmcllem 22745 tgss2 23015 ist1-2 23376 kgencn 23585 ptcnplem 23650 cnmptcom 23707 fbun 23869 cnflf 24031 fclsopn 24043 cnfcf 24071 isclmp 25149 isncvsngp 25202 caucfil 25336 ovolgelb 25534 dyadmax 25652 ftc1a 26098 ulmcau 26456 noetasuplem4 27799 conway 27862 cofcutr 27976 addsprop 28027 perpcom 28739 colinearalg 28943 uhgrvd00 29570 pthdlem2lem 29803 frgrwopregbsn 30349 phoeqi 30889 ho02i 31861 hoeq2 31863 adjsym 31865 cnvadj 31924 mddmd2 32341 cdj3lem3b 32472 mgccnv 32972 cvmlift2lem12 35282 elpotr 35745 fvineqsnf1 37376 poimirlem29 37609 heicant 37615 ispsubsp2 39703 fsuppind 42545 nla0003 43387 ntrclsiso 44029 ntrneiiso 44053 ntrneik2 44054 ntrneix2 44055 ntrneik3 44058 ntrneix3 44059 ntrneik13 44060 ntrneix13 44061 ntrneik4w 44062 imo72b2 44134 tratrb 44507 hbra2VD 44831 tratrbVD 44832 |
Copyright terms: Public domain | W3C validator |