![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralcom | Structured version Visualization version GIF version |
Description: Commutation of restricted universal quantifiers. See ralcom2 3374 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3374 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcom | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomst 466 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
2 | 1 | 2albii 1823 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
3 | alcom 2157 | . . 3 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
5 | r2al 3195 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | |
6 | r2al 3195 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-11 2155 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-ral 3063 |
This theorem is referenced by: rexcom 3288 ralrot3 3291 ralcom13 3292 ralcom13OLD 3293 2reu4lem 4526 ssint 4969 iinrab2 5074 disjxun 5147 reusv3 5404 cnvpo 6287 cnvso 6288 dfpo2 6296 fununi 6624 isocnv2 7328 dfsmo2 8347 tz7.48lem 8441 ixpiin 8918 boxriin 8934 dedekind 11377 rexfiuz 15294 gcdcllem1 16440 mreacs 17602 comfeq 17650 catpropd 17653 isnsg2 19036 cntzrec 19200 oppgsubm 19229 opprirred 20236 opprsubrg 20340 rmodislmodlem 20539 rmodislmod 20540 rmodislmodOLD 20541 islindf4 21393 cpmatmcllem 22220 tgss2 22490 ist1-2 22851 kgencn 23060 ptcnplem 23125 cnmptcom 23182 fbun 23344 cnflf 23506 fclsopn 23518 cnfcf 23546 isclmp 24613 isncvsngp 24666 caucfil 24800 ovolgelb 24997 dyadmax 25115 ftc1a 25554 ulmcau 25907 noetasuplem4 27239 conway 27300 cofcutr 27411 addsprop 27460 perpcom 27964 colinearalg 28168 uhgrvd00 28791 pthdlem2lem 29024 frgrwopregbsn 29570 phoeqi 30110 ho02i 31082 hoeq2 31084 adjsym 31086 cnvadj 31145 mddmd2 31562 cdj3lem3b 31693 mgccnv 32169 cvmlift2lem12 34305 elpotr 34753 fvineqsnf1 36291 poimirlem29 36517 heicant 36523 ispsubsp2 38617 fsuppind 41162 nla0003 42176 ntrclsiso 42818 ntrneiiso 42842 ntrneik2 42843 ntrneix2 42844 ntrneik3 42847 ntrneix3 42848 ntrneik13 42849 ntrneix13 42850 ntrneik4w 42851 imo72b2 42924 tratrb 43297 hbra2VD 43621 tratrbVD 43622 opprsubrng 46738 |
Copyright terms: Public domain | W3C validator |