| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralcom | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted universal quantifiers. See ralcom2 3348 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3348 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| ralcom | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomst 464 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 2 | 1 | 2albii 1820 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
| 3 | alcom 2160 | . . 3 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
| 5 | r2al 3171 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | |
| 6 | r2al 3171 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 |
| This theorem is referenced by: rexcom 3264 ralrot3 3266 ralcom13 3267 ralcom13OLD 3268 2reu4lem 4481 ssint 4924 iinrab2 5029 disjxun 5100 reusv3 5355 cnvpo 6248 cnvso 6249 dfpo2 6257 fununi 6575 isocnv2 7288 dfsmo2 8293 tz7.48lem 8386 ixpiin 8874 boxriin 8890 dedekind 11313 rexfiuz 15290 gcdcllem1 16445 mreacs 17599 comfeq 17647 catpropd 17650 isnsg2 19070 cntzrec 19250 oppgsubm 19276 opprirred 20342 opprsubrng 20479 opprsubrg 20513 opprdomnb 20637 rmodislmodlem 20867 rmodislmod 20868 islindf4 21780 cpmatmcllem 22638 tgss2 22907 ist1-2 23267 kgencn 23476 ptcnplem 23541 cnmptcom 23598 fbun 23760 cnflf 23922 fclsopn 23934 cnfcf 23962 isclmp 25030 isncvsngp 25082 caucfil 25216 ovolgelb 25414 dyadmax 25532 ftc1a 25977 ulmcau 26337 noetasuplem4 27681 conway 27745 cofcutr 27872 addsprop 27923 onsfi 28287 perpcom 28693 colinearalg 28890 uhgrvd00 29515 pthdlem2lem 29747 frgrwopregbsn 30296 phoeqi 30836 ho02i 31808 hoeq2 31810 adjsym 31812 cnvadj 31871 mddmd2 32288 cdj3lem3b 32419 mgccnv 32971 cvmlift2lem12 35294 elpotr 35762 fvineqsnf1 37391 poimirlem29 37636 heicant 37642 ispsubsp2 39733 fsuppind 42571 nla0003 43407 ntrclsiso 44049 ntrneiiso 44073 ntrneik2 44074 ntrneix2 44075 ntrneik3 44078 ntrneix3 44079 ntrneik13 44080 ntrneix13 44081 ntrneik4w 44082 imo72b2 44154 tratrb 44519 hbra2VD 44842 tratrbVD 44843 termopropd 49226 |
| Copyright terms: Public domain | W3C validator |