| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralcom | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted universal quantifiers. See ralcom2 3361 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3361 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| ralcom | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomst 464 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 2 | 1 | 2albii 1820 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
| 3 | alcom 2160 | . . 3 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
| 5 | r2al 3181 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | |
| 6 | r2al 3181 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3053 |
| This theorem is referenced by: rexcom 3275 ralrot3 3278 ralcom13 3279 ralcom13OLD 3280 2reu4lem 4502 ssint 4945 iinrab2 5051 disjxun 5122 reusv3 5380 cnvpo 6281 cnvso 6282 dfpo2 6290 fununi 6616 isocnv2 7329 dfsmo2 8366 tz7.48lem 8460 ixpiin 8943 boxriin 8959 dedekind 11403 rexfiuz 15371 gcdcllem1 16523 mreacs 17675 comfeq 17723 catpropd 17726 isnsg2 19144 cntzrec 19324 oppgsubm 19350 opprirred 20387 opprsubrng 20524 opprsubrg 20558 opprdomnb 20682 rmodislmodlem 20891 rmodislmod 20892 islindf4 21803 cpmatmcllem 22661 tgss2 22930 ist1-2 23290 kgencn 23499 ptcnplem 23564 cnmptcom 23621 fbun 23783 cnflf 23945 fclsopn 23957 cnfcf 23985 isclmp 25053 isncvsngp 25106 caucfil 25240 ovolgelb 25438 dyadmax 25556 ftc1a 26001 ulmcau 26361 noetasuplem4 27705 conway 27768 cofcutr 27889 addsprop 27940 onsfi 28304 perpcom 28697 colinearalg 28894 uhgrvd00 29519 pthdlem2lem 29754 frgrwopregbsn 30303 phoeqi 30843 ho02i 31815 hoeq2 31817 adjsym 31819 cnvadj 31878 mddmd2 32295 cdj3lem3b 32426 mgccnv 32984 cvmlift2lem12 35341 elpotr 35804 fvineqsnf1 37433 poimirlem29 37678 heicant 37684 ispsubsp2 39770 fsuppind 42588 nla0003 43424 ntrclsiso 44066 ntrneiiso 44090 ntrneik2 44091 ntrneix2 44092 ntrneik3 44095 ntrneix3 44096 ntrneik13 44097 ntrneix13 44098 ntrneik4w 44099 imo72b2 44171 tratrb 44536 hbra2VD 44859 tratrbVD 44860 termopropd 49141 |
| Copyright terms: Public domain | W3C validator |