| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralcom | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted universal quantifiers. See ralcom2 3351 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3351 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| ralcom | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomst 464 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 2 | 1 | 2albii 1820 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
| 3 | alcom 2160 | . . 3 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
| 5 | r2al 3173 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | |
| 6 | r2al 3173 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 |
| This theorem is referenced by: rexcom 3266 ralrot3 3268 ralcom13 3269 ralcom13OLD 3270 2reu4lem 4485 ssint 4928 iinrab2 5034 disjxun 5105 reusv3 5360 cnvpo 6260 cnvso 6261 dfpo2 6269 fununi 6591 isocnv2 7306 dfsmo2 8316 tz7.48lem 8409 ixpiin 8897 boxriin 8913 dedekind 11337 rexfiuz 15314 gcdcllem1 16469 mreacs 17619 comfeq 17667 catpropd 17670 isnsg2 19088 cntzrec 19268 oppgsubm 19294 opprirred 20331 opprsubrng 20468 opprsubrg 20502 opprdomnb 20626 rmodislmodlem 20835 rmodislmod 20836 islindf4 21747 cpmatmcllem 22605 tgss2 22874 ist1-2 23234 kgencn 23443 ptcnplem 23508 cnmptcom 23565 fbun 23727 cnflf 23889 fclsopn 23901 cnfcf 23929 isclmp 24997 isncvsngp 25049 caucfil 25183 ovolgelb 25381 dyadmax 25499 ftc1a 25944 ulmcau 26304 noetasuplem4 27648 conway 27711 cofcutr 27832 addsprop 27883 onsfi 28247 perpcom 28640 colinearalg 28837 uhgrvd00 29462 pthdlem2lem 29697 frgrwopregbsn 30246 phoeqi 30786 ho02i 31758 hoeq2 31760 adjsym 31762 cnvadj 31821 mddmd2 32238 cdj3lem3b 32369 mgccnv 32925 cvmlift2lem12 35301 elpotr 35769 fvineqsnf1 37398 poimirlem29 37643 heicant 37649 ispsubsp2 39740 fsuppind 42578 nla0003 43414 ntrclsiso 44056 ntrneiiso 44080 ntrneik2 44081 ntrneix2 44082 ntrneik3 44085 ntrneix3 44086 ntrneik13 44087 ntrneix13 44088 ntrneik4w 44089 imo72b2 44161 tratrb 44526 hbra2VD 44849 tratrbVD 44850 termopropd 49233 |
| Copyright terms: Public domain | W3C validator |