| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralcom | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted universal quantifiers. See ralcom2 3361 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3361 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| ralcom | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomst 464 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 2 | 1 | 2albii 1819 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
| 3 | alcom 2158 | . . 3 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
| 5 | r2al 3182 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | |
| 6 | r2al 3182 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∈ wcel 2107 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-11 2156 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ral 3051 |
| This theorem is referenced by: rexcom 3275 ralrot3 3278 ralcom13 3279 ralcom13OLD 3280 2reu4lem 4504 ssint 4946 iinrab2 5052 disjxun 5123 reusv3 5387 cnvpo 6289 cnvso 6290 dfpo2 6298 fununi 6622 isocnv2 7334 dfsmo2 8370 tz7.48lem 8464 ixpiin 8947 boxriin 8963 dedekind 11407 rexfiuz 15369 gcdcllem1 16519 mreacs 17677 comfeq 17725 catpropd 17728 isnsg2 19148 cntzrec 19328 oppgsubm 19354 opprirred 20395 opprsubrng 20532 opprsubrg 20566 opprdomnb 20690 rmodislmodlem 20900 rmodislmod 20901 islindf4 21825 cpmatmcllem 22691 tgss2 22960 ist1-2 23320 kgencn 23529 ptcnplem 23594 cnmptcom 23651 fbun 23813 cnflf 23975 fclsopn 23987 cnfcf 24015 isclmp 25085 isncvsngp 25138 caucfil 25272 ovolgelb 25470 dyadmax 25588 ftc1a 26033 ulmcau 26393 noetasuplem4 27736 conway 27799 cofcutr 27913 addsprop 27964 perpcom 28676 colinearalg 28874 uhgrvd00 29499 pthdlem2lem 29734 frgrwopregbsn 30283 phoeqi 30823 ho02i 31795 hoeq2 31797 adjsym 31799 cnvadj 31858 mddmd2 32275 cdj3lem3b 32406 mgccnv 32935 cvmlift2lem12 35260 elpotr 35723 fvineqsnf1 37352 poimirlem29 37597 heicant 37603 ispsubsp2 39689 fsuppind 42545 nla0003 43383 ntrclsiso 44025 ntrneiiso 44049 ntrneik2 44050 ntrneix2 44051 ntrneik3 44054 ntrneix3 44055 ntrneik13 44056 ntrneix13 44057 ntrneik4w 44058 imo72b2 44130 tratrb 44501 hbra2VD 44825 tratrbVD 44826 |
| Copyright terms: Public domain | W3C validator |