Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralcom | Structured version Visualization version GIF version |
Description: Commutation of restricted universal quantifiers. See ralcom2 3288 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3288 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcom | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomst 464 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
2 | 1 | 2albii 1824 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
3 | alcom 2158 | . . 3 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
4 | 2, 3 | bitri 274 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
5 | r2al 3124 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | |
6 | r2al 3124 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
7 | 4, 5, 6 | 3bitr4i 302 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-11 2156 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 |
This theorem is referenced by: ralcom13 3284 ralrot3 3286 2reu4lem 4453 ssint 4892 iinrab2 4995 disjxun 5068 reusv3 5323 cnvpo 6179 cnvso 6180 dfpo2 6188 fununi 6493 isocnv2 7182 dfsmo2 8149 tz7.48lem 8242 ixpiin 8670 boxriin 8686 dedekind 11068 rexfiuz 14987 gcdcllem1 16134 mreacs 17284 comfeq 17332 catpropd 17335 isnsg2 18699 cntzrec 18855 oppgsubm 18884 opprirred 19859 opprsubrg 19960 rmodislmodlem 20105 rmodislmod 20106 rmodislmodOLD 20107 islindf4 20955 cpmatmcllem 21775 tgss2 22045 ist1-2 22406 kgencn 22615 ptcnplem 22680 cnmptcom 22737 fbun 22899 cnflf 23061 fclsopn 23073 cnfcf 23101 isclmp 24166 isncvsngp 24218 caucfil 24352 ovolgelb 24549 dyadmax 24667 ftc1a 25106 ulmcau 25459 perpcom 26978 colinearalg 27181 uhgrvd00 27804 pthdlem2lem 28036 frgrwopregbsn 28582 phoeqi 29120 ho02i 30092 hoeq2 30094 adjsym 30096 cnvadj 30155 mddmd2 30572 cdj3lem3b 30703 mgccnv 31179 cvmlift2lem12 33176 elpotr 33663 noetasuplem4 33866 conway 33920 cofcutr 34019 fvineqsnf1 35508 poimirlem29 35733 heicant 35739 ispsubsp2 37687 fsuppind 40202 ntrclsiso 41566 ntrneiiso 41590 ntrneik2 41591 ntrneix2 41592 ntrneik3 41595 ntrneix3 41596 ntrneik13 41597 ntrneix13 41598 ntrneik4w 41599 imo72b2 41672 tratrb 42045 hbra2VD 42369 tratrbVD 42370 |
Copyright terms: Public domain | W3C validator |