| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralcom | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted universal quantifiers. See ralcom2 3340 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3340 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| ralcom | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomst 464 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 2 | 1 | 2albii 1820 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
| 3 | alcom 2160 | . . 3 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
| 5 | r2al 3165 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | |
| 6 | r2al 3165 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 |
| This theorem is referenced by: rexcom 3258 ralrot3 3260 ralcom13 3261 2reu4lem 4473 ssint 4914 iinrab2 5019 disjxun 5090 reusv3 5344 cnvpo 6235 cnvso 6236 dfpo2 6244 fununi 6557 isocnv2 7268 dfsmo2 8270 tz7.48lem 8363 ixpiin 8851 boxriin 8867 dedekind 11279 rexfiuz 15255 gcdcllem1 16410 mreacs 17564 comfeq 17612 catpropd 17615 isnsg2 19035 cntzrec 19215 oppgsubm 19241 opprirred 20307 opprsubrng 20444 opprsubrg 20478 opprdomnb 20602 rmodislmodlem 20832 rmodislmod 20833 islindf4 21745 cpmatmcllem 22603 tgss2 22872 ist1-2 23232 kgencn 23441 ptcnplem 23506 cnmptcom 23563 fbun 23725 cnflf 23887 fclsopn 23899 cnfcf 23927 isclmp 24995 isncvsngp 25047 caucfil 25181 ovolgelb 25379 dyadmax 25497 ftc1a 25942 ulmcau 26302 noetasuplem4 27646 conway 27710 cofcutr 27837 addsprop 27888 onsfi 28252 perpcom 28658 colinearalg 28855 uhgrvd00 29480 pthdlem2lem 29712 frgrwopregbsn 30261 phoeqi 30801 ho02i 31773 hoeq2 31775 adjsym 31777 cnvadj 31836 mddmd2 32253 cdj3lem3b 32384 mgccnv 32941 cvmlift2lem12 35291 elpotr 35759 fvineqsnf1 37388 poimirlem29 37633 heicant 37639 ispsubsp2 39729 fsuppind 42567 nla0003 43402 ntrclsiso 44044 ntrneiiso 44068 ntrneik2 44069 ntrneix2 44070 ntrneik3 44073 ntrneix3 44074 ntrneik13 44075 ntrneix13 44076 ntrneik4w 44077 imo72b2 44149 tratrb 44514 hbra2VD 44837 tratrbVD 44838 termopropd 49233 |
| Copyright terms: Public domain | W3C validator |