MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralcom Structured version   Visualization version   GIF version

Theorem ralcom 3167
Description: Commutation of restricted universal quantifiers. See ralcom2 3291 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3291 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
ralcom (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem ralcom
StepHypRef Expression
1 ancomst 465 . . . 4 (((𝑥𝐴𝑦𝐵) → 𝜑) ↔ ((𝑦𝐵𝑥𝐴) → 𝜑))
212albii 1823 . . 3 (∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ ∀𝑥𝑦((𝑦𝐵𝑥𝐴) → 𝜑))
3 alcom 2157 . . 3 (∀𝑥𝑦((𝑦𝐵𝑥𝐴) → 𝜑) ↔ ∀𝑦𝑥((𝑦𝐵𝑥𝐴) → 𝜑))
42, 3bitri 274 . 2 (∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ ∀𝑦𝑥((𝑦𝐵𝑥𝐴) → 𝜑))
5 r2al 3119 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
6 r2al 3119 . 2 (∀𝑦𝐵𝑥𝐴 𝜑 ↔ ∀𝑦𝑥((𝑦𝐵𝑥𝐴) → 𝜑))
74, 5, 63bitr4i 303 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wcel 2107  wral 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-11 2155
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-ral 3070
This theorem is referenced by:  rexcom  3235  ralcom13  3287  ralrot3  3289  2reu4lem  4457  ssint  4896  iinrab2  5000  disjxun  5073  reusv3  5329  cnvpo  6194  cnvso  6195  dfpo2  6203  fununi  6516  isocnv2  7211  dfsmo2  8187  tz7.48lem  8281  ixpiin  8721  boxriin  8737  dedekind  11147  rexfiuz  15068  gcdcllem1  16215  mreacs  17376  comfeq  17424  catpropd  17427  isnsg2  18793  cntzrec  18949  oppgsubm  18978  opprirred  19953  opprsubrg  20054  rmodislmodlem  20199  rmodislmod  20200  rmodislmodOLD  20201  islindf4  21054  cpmatmcllem  21876  tgss2  22146  ist1-2  22507  kgencn  22716  ptcnplem  22781  cnmptcom  22838  fbun  23000  cnflf  23162  fclsopn  23174  cnfcf  23202  isclmp  24269  isncvsngp  24322  caucfil  24456  ovolgelb  24653  dyadmax  24771  ftc1a  25210  ulmcau  25563  perpcom  27083  colinearalg  27287  uhgrvd00  27910  pthdlem2lem  28144  frgrwopregbsn  28690  phoeqi  29228  ho02i  30200  hoeq2  30202  adjsym  30204  cnvadj  30263  mddmd2  30680  cdj3lem3b  30811  mgccnv  31286  cvmlift2lem12  33285  elpotr  33766  noetasuplem4  33948  conway  34002  cofcutr  34101  fvineqsnf1  35590  poimirlem29  35815  heicant  35821  ispsubsp2  37767  fsuppind  40286  ntrclsiso  41684  ntrneiiso  41708  ntrneik2  41709  ntrneix2  41710  ntrneik3  41713  ntrneix3  41714  ntrneik13  41715  ntrneix13  41716  ntrneik4w  41717  imo72b2  41790  tratrb  42163  hbra2VD  42487  tratrbVD  42488
  Copyright terms: Public domain W3C validator