![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralcom | Structured version Visualization version GIF version |
Description: Commutation of restricted universal quantifiers. See ralcom2 3375 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3375 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcom | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomst 464 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
2 | 1 | 2albii 1817 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
3 | alcom 2157 | . . 3 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
5 | r2al 3193 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | |
6 | r2al 3193 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∈ wcel 2106 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-11 2155 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-ral 3060 |
This theorem is referenced by: rexcom 3288 ralrot3 3291 ralcom13 3292 ralcom13OLD 3293 2reu4lem 4528 ssint 4969 iinrab2 5075 disjxun 5146 reusv3 5411 cnvpo 6309 cnvso 6310 dfpo2 6318 fununi 6643 isocnv2 7351 dfsmo2 8386 tz7.48lem 8480 ixpiin 8963 boxriin 8979 dedekind 11422 rexfiuz 15383 gcdcllem1 16533 mreacs 17703 comfeq 17751 catpropd 17754 isnsg2 19187 cntzrec 19367 oppgsubm 19396 opprirred 20439 opprsubrng 20576 opprsubrg 20610 opprdomnb 20734 rmodislmodlem 20944 rmodislmod 20945 rmodislmodOLD 20946 islindf4 21876 cpmatmcllem 22740 tgss2 23010 ist1-2 23371 kgencn 23580 ptcnplem 23645 cnmptcom 23702 fbun 23864 cnflf 24026 fclsopn 24038 cnfcf 24066 isclmp 25144 isncvsngp 25197 caucfil 25331 ovolgelb 25529 dyadmax 25647 ftc1a 26093 ulmcau 26453 noetasuplem4 27796 conway 27859 cofcutr 27973 addsprop 28024 perpcom 28736 colinearalg 28940 uhgrvd00 29567 pthdlem2lem 29800 frgrwopregbsn 30346 phoeqi 30886 ho02i 31858 hoeq2 31860 adjsym 31862 cnvadj 31921 mddmd2 32338 cdj3lem3b 32469 mgccnv 32974 cvmlift2lem12 35299 elpotr 35763 fvineqsnf1 37393 poimirlem29 37636 heicant 37642 ispsubsp2 39729 fsuppind 42577 nla0003 43415 ntrclsiso 44057 ntrneiiso 44081 ntrneik2 44082 ntrneix2 44083 ntrneik3 44086 ntrneix3 44087 ntrneik13 44088 ntrneix13 44089 ntrneik4w 44090 imo72b2 44162 tratrb 44534 hbra2VD 44858 tratrbVD 44859 |
Copyright terms: Public domain | W3C validator |