| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralcom | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted universal quantifiers. See ralcom2 3343 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3343 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| ralcom | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancomst 464 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 2 | 1 | 2albii 1821 | . . 3 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
| 3 | alcom 2162 | . . 3 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
| 5 | r2al 3168 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑)) | |
| 6 | r2al 3168 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-11 2160 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3048 |
| This theorem is referenced by: rexcom 3261 ralrot3 3263 ralcom13 3264 2reu4lem 4469 ssint 4912 iinrab2 5016 disjxun 5087 reusv3 5341 cnvpo 6234 cnvso 6235 dfpo2 6243 fununi 6556 isocnv2 7265 dfsmo2 8267 tz7.48lem 8360 ixpiin 8848 boxriin 8864 dedekind 11276 rexfiuz 15255 gcdcllem1 16410 mreacs 17564 comfeq 17612 catpropd 17615 isnsg2 19068 cntzrec 19248 oppgsubm 19274 opprirred 20340 opprsubrng 20474 opprsubrg 20508 opprdomnb 20632 rmodislmodlem 20862 rmodislmod 20863 islindf4 21775 cpmatmcllem 22633 tgss2 22902 ist1-2 23262 kgencn 23471 ptcnplem 23536 cnmptcom 23593 fbun 23755 cnflf 23917 fclsopn 23929 cnfcf 23957 isclmp 25024 isncvsngp 25076 caucfil 25210 ovolgelb 25408 dyadmax 25526 ftc1a 25971 ulmcau 26331 noetasuplem4 27675 conway 27740 cofcutr 27868 addsprop 27919 onsfi 28283 perpcom 28691 colinearalg 28888 uhgrvd00 29513 pthdlem2lem 29745 frgrwopregbsn 30297 phoeqi 30837 ho02i 31809 hoeq2 31811 adjsym 31813 cnvadj 31872 mddmd2 32289 cdj3lem3b 32420 mgccnv 32980 cvmlift2lem12 35358 elpotr 35823 fvineqsnf1 37454 poimirlem29 37699 heicant 37705 ispsubsp2 39855 fsuppind 42693 nla0003 43528 ntrclsiso 44170 ntrneiiso 44194 ntrneik2 44195 ntrneix2 44196 ntrneik3 44199 ntrneix3 44200 ntrneik13 44201 ntrneix13 44202 ntrneik4w 44203 imo72b2 44275 tratrb 44639 hbra2VD 44962 tratrbVD 44963 termopropd 49355 |
| Copyright terms: Public domain | W3C validator |