Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexcom13 | Structured version Visualization version GIF version |
Description: Swap first and third restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.) |
Ref | Expression |
---|---|
rexcom13 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom 3234 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝜑) | |
2 | rexcom 3234 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝜑) | |
3 | 2 | rexbii 3181 | . 2 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝜑) |
4 | rexcom 3234 | . 2 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-11 2154 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3069 df-rex 3070 |
This theorem is referenced by: rexrot4 3289 |
Copyright terms: Public domain | W3C validator |