MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexcom13 Structured version   Visualization version   GIF version

Theorem rexcom13 3285
Description: Swap first and third restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.)
Assertion
Ref Expression
rexcom13 (∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑧,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑧)

Proof of Theorem rexcom13
StepHypRef Expression
1 rexcom 3281 . 2 (∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑦𝐵𝑥𝐴𝑧𝐶 𝜑)
2 rexcom 3281 . . 3 (∃𝑥𝐴𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑥𝐴 𝜑)
32rexbii 3177 . 2 (∃𝑦𝐵𝑥𝐴𝑧𝐶 𝜑 ↔ ∃𝑦𝐵𝑧𝐶𝑥𝐴 𝜑)
4 rexcom 3281 . 2 (∃𝑦𝐵𝑧𝐶𝑥𝐴 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
51, 3, 43bitri 296 1 (∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-11 2156
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-rex 3069
This theorem is referenced by:  rexrot4  3287
  Copyright terms: Public domain W3C validator