| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom13 | Structured version Visualization version GIF version | ||
| Description: Swap first and third restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.) |
| Ref | Expression |
|---|---|
| rexcom13 | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom 3289 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝜑) | |
| 2 | rexcom 3289 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝜑) | |
| 3 | 2 | rexbii 3093 | . 2 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝜑) |
| 4 | rexcom 3289 | . 2 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑧 ∈ 𝐶 ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wrex 3069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-11 2156 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ral 3061 df-rex 3070 |
| This theorem is referenced by: rexrot4 3296 |
| Copyright terms: Public domain | W3C validator |