MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximdvva Structured version   Visualization version   GIF version

Theorem reximdvva 3206
Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by AV, 5-Jan-2022.)
Hypothesis
Ref Expression
reximdvva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
reximdvva (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 → ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝜑
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem reximdvva
StepHypRef Expression
1 reximdvva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21anassrs 471 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32reximdva 3203 . 2 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝜓 → ∃𝑦𝐵 𝜒))
43reximdva 3203 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 → ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-rex 3070
This theorem is referenced by:  reuop  6173  lcmgcdlem  16195  lsmelval2  20154  cpmadugsum  21806  axpasch  27063  frgrwopreglem5  28435  frgrwopreglem5ALT  28436  eulerpartlemgvv  32086  cusgr3cyclex  32841  cvmlift2lem10  33017  ftc1anclem6  35628  prprelprb  44687  reupr  44692
  Copyright terms: Public domain W3C validator