MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximdvva Structured version   Visualization version   GIF version

Theorem reximdvva 3192
Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by AV, 5-Jan-2022.)
Hypothesis
Ref Expression
ralimdvva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
reximdvva (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 → ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝜑
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem reximdvva
StepHypRef Expression
1 ralimdvva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21anassrs 467 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32reximdva 3153 . 2 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝜓 → ∃𝑦𝐵 𝜒))
43reximdva 3153 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 → ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wrex 3060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-rex 3061
This theorem is referenced by:  reuop  6282  lcmgcdlem  16625  lsmelval2  21043  cpmadugsum  22816  mulsuniflem  28104  axpasch  28920  frgrwopreglem5  30302  frgrwopreglem5ALT  30303  eulerpartlemgvv  34408  cusgr3cyclex  35158  cvmlift2lem10  35334  ftc1anclem6  37722  hashnexinjle  42142  prprelprb  47531  reupr  47536  grtriprop  47953
  Copyright terms: Public domain W3C validator