| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdvva | Structured version Visualization version GIF version | ||
| Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by AV, 5-Jan-2022.) |
| Ref | Expression |
|---|---|
| ralimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| reximdvva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdvva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
| 2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒)) |
| 3 | 2 | reximdva 3142 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝜓 → ∃𝑦 ∈ 𝐵 𝜒)) |
| 4 | 3 | reximdva 3142 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: reuop 6245 lcmgcdlem 16535 lsmelval2 21007 cpmadugsum 22781 mulsuniflem 28075 axpasch 28904 frgrwopreglem5 30283 frgrwopreglem5ALT 30284 eulerpartlemgvv 34346 cusgr3cyclex 35111 cvmlift2lem10 35287 ftc1anclem6 37680 hashnexinjle 42105 prprelprb 47505 reupr 47510 grtriprop 47929 |
| Copyright terms: Public domain | W3C validator |