MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximdvva Structured version   Visualization version   GIF version

Theorem reximdvva 3180
Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by AV, 5-Jan-2022.)
Hypothesis
Ref Expression
ralimdvva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
reximdvva (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 → ∃𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝜑
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem reximdvva
StepHypRef Expression
1 ralimdvva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21anassrs 467 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32reximdva 3145 . 2 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝜓 → ∃𝑦𝐵 𝜒))
43reximdva 3145 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 → ∃𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-rex 3057
This theorem is referenced by:  reuop  6240  lcmgcdlem  16517  lsmelval2  21020  cpmadugsum  22794  mulsuniflem  28089  axpasch  28920  frgrwopreglem5  30299  frgrwopreglem5ALT  30300  eulerpartlemgvv  34387  cusgr3cyclex  35178  cvmlift2lem10  35354  ftc1anclem6  37744  hashnexinjle  42168  prprelprb  47554  reupr  47559  grtriprop  47978
  Copyright terms: Public domain W3C validator