![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimdv | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1810). (Contributed by NM, 8-Oct-2003.) |
Ref | Expression |
---|---|
ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | adantr 479 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
3 | 2 | ralimdva 3165 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ral 3060 |
This theorem is referenced by: r19.21v 3177 ss2ralv 4051 poss 5589 sess1 5643 sess2 5644 riinint 5966 iinpreima 7069 dffo4 7103 dffo5 7104 isoini2 7338 tfindsg 7852 el2mpocsbcl 8073 xpord3inddlem 8142 iiner 8785 xpf1o 9141 dffi3 9428 brwdom3 9579 xpwdomg 9582 ttrclss 9717 bndrank 9838 cfub 10246 cff1 10255 cfflb 10256 cfslb2n 10265 cofsmo 10266 cfcoflem 10269 pwcfsdom 10580 fpwwe2lem12 10639 inawinalem 10686 grupr 10794 fsequb 13944 cau3lem 15305 caubnd2 15308 caubnd 15309 rlim2lt 15445 rlim3 15446 climshftlem 15522 climcau 15621 caucvgb 15630 serf0 15631 modfsummods 15743 cvgcmp 15766 mreriincl 17546 acsfn1c 17610 islss4 20717 riinopn 22630 fiinbas 22675 baspartn 22677 isclo2 22812 lmcls 23026 lmcnp 23028 isnrm3 23083 1stcelcls 23185 llyss 23203 nllyss 23204 ptpjpre1 23295 txlly 23360 txnlly 23361 tx1stc 23374 xkococnlem 23383 fbunfip 23593 filssufilg 23635 cnpflf2 23724 fcfnei 23759 isucn2 24004 rescncf 24637 lebnum 24710 cfilss 25018 fgcfil 25019 iscau4 25027 cmetcaulem 25036 caussi 25045 ovolunlem1 25246 ulmclm 26135 ulmcaulem 26142 ulmcau 26143 ulmss 26145 rlimcnp 26706 cxploglim 26718 2sqreunnlem2 27194 pntlemp 27349 nosupno 27442 nosupres 27446 noinfno 27457 noinfres 27461 sssslt2 27534 madebdayim 27619 madebdaylemold 27629 axcontlem4 28492 ewlkle 29129 uspgr2wlkeq 29170 umgrwlknloop 29173 wlkiswwlksupgr2 29398 3cyclfrgrrn2 29807 nmlnoubi 30316 lnon0 30318 disjpreima 32082 resspos 32403 resstos 32404 submarchi 32602 prmidl2 32833 crefss 33127 iccllysconn 34539 cvmlift2lem1 34591 dmopab3rexdif 34694 ss2mcls 34857 mclsax 34858 isinf2 36589 poimirlem25 36816 poimirlem27 36818 upixp 36900 caushft 36932 sstotbnd3 36947 totbndss 36948 unichnidl 37202 ispridl2 37209 elrfirn2 41736 mzpsubst 41788 eluzrabdioph 41846 neik0pk1imk0 43100 mnuop3d 43332 ismnushort 43362 limsupub 44718 limsupre3lem 44746 climuzlem 44757 xlimbr 44841 fourierdlem103 45223 fourierdlem104 45224 qndenserrnbllem 45308 2reuimp 46121 ralralimp 46284 |
Copyright terms: Public domain | W3C validator |