Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralimdv | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1813). (Contributed by NM, 8-Oct-2003.) |
Ref | Expression |
---|---|
ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
3 | 2 | ralimdva 3108 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3069 |
This theorem is referenced by: r19.21v 3113 ss2ralv 3989 poss 5505 sess1 5557 sess2 5558 riinint 5877 iinpreima 6946 dffo4 6979 dffo5 6980 isoini2 7210 tfindsg 7707 el2mpocsbcl 7925 iiner 8578 xpf1o 8926 dffi3 9190 brwdom3 9341 xpwdomg 9344 ttrclss 9478 bndrank 9599 cfub 10005 cff1 10014 cfflb 10015 cfslb2n 10024 cofsmo 10025 cfcoflem 10028 pwcfsdom 10339 fpwwe2lem12 10398 inawinalem 10445 grupr 10553 fsequb 13695 cau3lem 15066 caubnd2 15069 caubnd 15070 rlim2lt 15206 rlim3 15207 climshftlem 15283 climcau 15382 caucvgb 15391 serf0 15392 modfsummods 15505 cvgcmp 15528 mreriincl 17307 acsfn1c 17371 islss4 20224 riinopn 22057 fiinbas 22102 baspartn 22104 isclo2 22239 lmcls 22453 lmcnp 22455 isnrm3 22510 1stcelcls 22612 llyss 22630 nllyss 22631 ptpjpre1 22722 txlly 22787 txnlly 22788 tx1stc 22801 xkococnlem 22810 fbunfip 23020 filssufilg 23062 cnpflf2 23151 fcfnei 23186 isucn2 23431 rescncf 24060 lebnum 24127 cfilss 24434 fgcfil 24435 iscau4 24443 cmetcaulem 24452 caussi 24461 ovolunlem1 24661 ulmclm 25546 ulmcaulem 25553 ulmcau 25554 ulmss 25556 rlimcnp 26115 cxploglim 26127 2sqreunnlem2 26603 pntlemp 26758 axcontlem4 27335 ewlkle 27972 uspgr2wlkeq 28013 umgrwlknloop 28016 wlkiswwlksupgr2 28242 3cyclfrgrrn2 28651 nmlnoubi 29158 lnon0 29160 disjpreima 30923 resspos 31244 resstos 31245 submarchi 31440 prmidl2 31616 crefss 31799 iccllysconn 33212 cvmlift2lem1 33264 dmopab3rexdif 33367 ss2mcls 33530 mclsax 33531 nosupno 33906 nosupres 33910 noinfno 33921 noinfres 33925 sssslt2 33990 madebdayim 34070 madebdaylemold 34078 isinf2 35576 poimirlem25 35802 poimirlem27 35804 upixp 35887 caushft 35919 sstotbnd3 35934 totbndss 35935 unichnidl 36189 ispridl2 36196 elrfirn2 40518 mzpsubst 40570 eluzrabdioph 40628 neik0pk1imk0 41657 mnuop3d 41889 ismnushort 41919 limsupub 43245 limsupre3lem 43273 climuzlem 43284 xlimbr 43368 fourierdlem103 43750 fourierdlem104 43751 qndenserrnbllem 43835 2reuimp 44607 ralralimp 44770 |
Copyright terms: Public domain | W3C validator |