| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdv | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1810). (Contributed by NM, 8-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | ralimdva 3145 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: r19.21v 3158 ralimdvv 3186 ss2ralv 4017 poss 5548 sess1 5603 sess2 5604 riinint 5935 iinpreima 7041 dffo4 7075 dffo5 7076 isoini2 7314 tfindsg 7837 el2mpocsbcl 8064 xpord3inddlem 8133 iiner 8762 xpf1o 9103 dffi3 9382 brwdom3 9535 xpwdomg 9538 ttrclss 9673 bndrank 9794 cfub 10202 cff1 10211 cfflb 10212 cfslb2n 10221 cofsmo 10222 cfcoflem 10225 pwcfsdom 10536 fpwwe2lem12 10595 inawinalem 10642 grupr 10750 fsequb 13940 cau3lem 15321 caubnd2 15324 caubnd 15325 rlim2lt 15463 rlim3 15464 climshftlem 15540 climcau 15637 caucvgb 15646 serf0 15647 modfsummods 15759 cvgcmp 15782 mreriincl 17559 acsfn1c 17623 islss4 20868 riinopn 22795 fiinbas 22839 baspartn 22841 isclo2 22975 lmcls 23189 lmcnp 23191 isnrm3 23246 1stcelcls 23348 llyss 23366 nllyss 23367 ptpjpre1 23458 txlly 23523 txnlly 23524 tx1stc 23537 xkococnlem 23546 fbunfip 23756 filssufilg 23798 cnpflf2 23887 fcfnei 23922 isucn2 24166 rescncf 24790 lebnum 24863 cfilss 25170 fgcfil 25171 iscau4 25179 cmetcaulem 25188 caussi 25197 ovolunlem1 25398 ulmclm 26296 ulmcaulem 26303 ulmcau 26304 ulmss 26306 rlimcnp 26875 cxploglim 26888 2sqreunnlem2 27366 pntlemp 27521 nosupno 27615 nosupres 27619 noinfno 27630 noinfres 27634 sssslt2 27708 madebdayim 27799 madebdaylemold 27809 axcontlem4 28894 ewlkle 29533 uspgr2wlkeq 29574 umgrwlknloop 29577 wlkiswwlksupgr2 29807 3cyclfrgrrn2 30216 nmlnoubi 30725 lnon0 30727 disjpreima 32513 resspos 32892 resstos 32893 submarchi 33140 prmidl2 33412 crefss 33839 iccllysconn 35237 cvmlift2lem1 35289 dmopab3rexdif 35392 ss2mcls 35555 mclsax 35556 isinf2 37393 poimirlem25 37639 poimirlem27 37641 upixp 37723 caushft 37755 sstotbnd3 37770 totbndss 37771 unichnidl 38025 ispridl2 38032 elrfirn2 42684 mzpsubst 42736 eluzrabdioph 42794 neik0pk1imk0 44036 mnuop3d 44260 ismnushort 44290 pwclaxpow 44974 limsupub 45702 limsupre3lem 45730 climuzlem 45741 xlimbr 45825 fourierdlem103 46207 fourierdlem104 46208 qndenserrnbllem 46292 2reuimp 47116 ralralimp 47279 |
| Copyright terms: Public domain | W3C validator |