![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimdv | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1808). (Contributed by NM, 8-Oct-2003.) |
Ref | Expression |
---|---|
ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
3 | 2 | ralimdva 3173 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 |
This theorem is referenced by: r19.21v 3186 ss2ralv 4079 poss 5609 sess1 5665 sess2 5666 riinint 5994 iinpreima 7102 dffo4 7137 dffo5 7138 isoini2 7375 tfindsg 7898 el2mpocsbcl 8126 xpord3inddlem 8195 iiner 8847 xpf1o 9205 dffi3 9500 brwdom3 9651 xpwdomg 9654 ttrclss 9789 bndrank 9910 cfub 10318 cff1 10327 cfflb 10328 cfslb2n 10337 cofsmo 10338 cfcoflem 10341 pwcfsdom 10652 fpwwe2lem12 10711 inawinalem 10758 grupr 10866 fsequb 14026 cau3lem 15403 caubnd2 15406 caubnd 15407 rlim2lt 15543 rlim3 15544 climshftlem 15620 climcau 15719 caucvgb 15728 serf0 15729 modfsummods 15841 cvgcmp 15864 mreriincl 17656 acsfn1c 17720 islss4 20983 riinopn 22935 fiinbas 22980 baspartn 22982 isclo2 23117 lmcls 23331 lmcnp 23333 isnrm3 23388 1stcelcls 23490 llyss 23508 nllyss 23509 ptpjpre1 23600 txlly 23665 txnlly 23666 tx1stc 23679 xkococnlem 23688 fbunfip 23898 filssufilg 23940 cnpflf2 24029 fcfnei 24064 isucn2 24309 rescncf 24942 lebnum 25015 cfilss 25323 fgcfil 25324 iscau4 25332 cmetcaulem 25341 caussi 25350 ovolunlem1 25551 ulmclm 26448 ulmcaulem 26455 ulmcau 26456 ulmss 26458 rlimcnp 27026 cxploglim 27039 2sqreunnlem2 27517 pntlemp 27672 nosupno 27766 nosupres 27770 noinfno 27781 noinfres 27785 sssslt2 27859 madebdayim 27944 madebdaylemold 27954 axcontlem4 29000 ewlkle 29641 uspgr2wlkeq 29682 umgrwlknloop 29685 wlkiswwlksupgr2 29910 3cyclfrgrrn2 30319 nmlnoubi 30828 lnon0 30830 disjpreima 32606 resspos 32939 resstos 32940 submarchi 33166 prmidl2 33434 crefss 33795 iccllysconn 35218 cvmlift2lem1 35270 dmopab3rexdif 35373 ss2mcls 35536 mclsax 35537 isinf2 37371 poimirlem25 37605 poimirlem27 37607 upixp 37689 caushft 37721 sstotbnd3 37736 totbndss 37737 unichnidl 37991 ispridl2 37998 elrfirn2 42652 mzpsubst 42704 eluzrabdioph 42762 neik0pk1imk0 44009 mnuop3d 44240 ismnushort 44270 limsupub 45625 limsupre3lem 45653 climuzlem 45664 xlimbr 45748 fourierdlem103 46130 fourierdlem104 46131 qndenserrnbllem 46215 2reuimp 47030 ralralimp 47193 |
Copyright terms: Public domain | W3C validator |