| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdv | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1811). (Contributed by NM, 8-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | ralimdva 3144 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3048 |
| This theorem is referenced by: r19.21v 3157 ralimdvv 3181 ss2ralv 4000 poss 5524 sess1 5579 sess2 5580 riinint 5910 iinpreima 7002 dffo4 7036 dffo5 7037 isoini2 7273 tfindsg 7791 el2mpocsbcl 8015 xpord3inddlem 8084 iiner 8713 xpf1o 9052 dffi3 9315 brwdom3 9468 xpwdomg 9471 ttrclss 9610 bndrank 9734 cfub 10140 cff1 10149 cfflb 10150 cfslb2n 10159 cofsmo 10160 cfcoflem 10163 pwcfsdom 10474 fpwwe2lem12 10533 inawinalem 10580 grupr 10688 fsequb 13882 cau3lem 15262 caubnd2 15265 caubnd 15266 rlim2lt 15404 rlim3 15405 climshftlem 15481 climcau 15578 caucvgb 15587 serf0 15588 modfsummods 15700 cvgcmp 15723 mreriincl 17500 acsfn1c 17568 resspos 18335 resstos 18336 chnrss 18521 islss4 20895 riinopn 22823 fiinbas 22867 baspartn 22869 isclo2 23003 lmcls 23217 lmcnp 23219 isnrm3 23274 1stcelcls 23376 llyss 23394 nllyss 23395 ptpjpre1 23486 txlly 23551 txnlly 23552 tx1stc 23565 xkococnlem 23574 fbunfip 23784 filssufilg 23826 cnpflf2 23915 fcfnei 23950 isucn2 24193 rescncf 24817 lebnum 24890 cfilss 25197 fgcfil 25198 iscau4 25206 cmetcaulem 25215 caussi 25224 ovolunlem1 25425 ulmclm 26323 ulmcaulem 26330 ulmcau 26331 ulmss 26333 rlimcnp 26902 cxploglim 26915 2sqreunnlem2 27393 pntlemp 27548 nosupno 27642 nosupres 27646 noinfno 27657 noinfres 27661 sssslt2 27737 madebdayim 27833 madebdaylemold 27843 axcontlem4 28945 ewlkle 29584 uspgr2wlkeq 29624 umgrwlknloop 29627 wlkiswwlksupgr2 29855 3cyclfrgrrn2 30267 nmlnoubi 30776 lnon0 30778 disjpreima 32564 submarchi 33155 prmidl2 33406 crefss 33862 r1filimi 35114 iccllysconn 35294 cvmlift2lem1 35346 dmopab3rexdif 35449 ss2mcls 35612 mclsax 35613 isinf2 37449 poimirlem25 37695 poimirlem27 37697 upixp 37779 caushft 37811 sstotbnd3 37826 totbndss 37827 unichnidl 38081 ispridl2 38088 elrfirn2 42799 mzpsubst 42851 eluzrabdioph 42909 neik0pk1imk0 44150 mnuop3d 44374 ismnushort 44404 pwclaxpow 45087 limsupub 45812 limsupre3lem 45840 climuzlem 45851 xlimbr 45935 fourierdlem103 46317 fourierdlem104 46318 qndenserrnbllem 46402 2reuimp 47225 ralralimp 47388 |
| Copyright terms: Public domain | W3C validator |