| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdv | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1810). (Contributed by NM, 8-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | ralimdva 3141 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: r19.21v 3154 ralimdvv 3178 ss2ralv 4006 poss 5529 sess1 5584 sess2 5585 riinint 5913 iinpreima 7003 dffo4 7037 dffo5 7038 isoini2 7276 tfindsg 7794 el2mpocsbcl 8018 xpord3inddlem 8087 iiner 8716 xpf1o 9056 dffi3 9321 brwdom3 9474 xpwdomg 9477 ttrclss 9616 bndrank 9737 cfub 10143 cff1 10152 cfflb 10153 cfslb2n 10162 cofsmo 10163 cfcoflem 10166 pwcfsdom 10477 fpwwe2lem12 10536 inawinalem 10583 grupr 10691 fsequb 13882 cau3lem 15262 caubnd2 15265 caubnd 15266 rlim2lt 15404 rlim3 15405 climshftlem 15481 climcau 15578 caucvgb 15587 serf0 15588 modfsummods 15700 cvgcmp 15723 mreriincl 17500 acsfn1c 17568 resspos 18335 resstos 18336 islss4 20865 riinopn 22793 fiinbas 22837 baspartn 22839 isclo2 22973 lmcls 23187 lmcnp 23189 isnrm3 23244 1stcelcls 23346 llyss 23364 nllyss 23365 ptpjpre1 23456 txlly 23521 txnlly 23522 tx1stc 23535 xkococnlem 23544 fbunfip 23754 filssufilg 23796 cnpflf2 23885 fcfnei 23920 isucn2 24164 rescncf 24788 lebnum 24861 cfilss 25168 fgcfil 25169 iscau4 25177 cmetcaulem 25186 caussi 25195 ovolunlem1 25396 ulmclm 26294 ulmcaulem 26301 ulmcau 26302 ulmss 26304 rlimcnp 26873 cxploglim 26886 2sqreunnlem2 27364 pntlemp 27519 nosupno 27613 nosupres 27617 noinfno 27628 noinfres 27632 sssslt2 27707 madebdayim 27802 madebdaylemold 27812 axcontlem4 28912 ewlkle 29551 uspgr2wlkeq 29591 umgrwlknloop 29594 wlkiswwlksupgr2 29822 3cyclfrgrrn2 30231 nmlnoubi 30740 lnon0 30742 disjpreima 32528 submarchi 33129 prmidl2 33379 crefss 33822 iccllysconn 35233 cvmlift2lem1 35285 dmopab3rexdif 35388 ss2mcls 35551 mclsax 35552 isinf2 37389 poimirlem25 37635 poimirlem27 37637 upixp 37719 caushft 37751 sstotbnd3 37766 totbndss 37767 unichnidl 38021 ispridl2 38028 elrfirn2 42679 mzpsubst 42731 eluzrabdioph 42789 neik0pk1imk0 44030 mnuop3d 44254 ismnushort 44284 pwclaxpow 44968 limsupub 45695 limsupre3lem 45723 climuzlem 45734 xlimbr 45818 fourierdlem103 46200 fourierdlem104 46201 qndenserrnbllem 46285 2reuimp 47109 ralralimp 47272 |
| Copyright terms: Public domain | W3C validator |