| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdv | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1810). (Contributed by NM, 8-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | ralimdva 3152 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3052 |
| This theorem is referenced by: r19.21v 3165 ss2ralv 4029 poss 5563 sess1 5619 sess2 5620 riinint 5951 iinpreima 7058 dffo4 7092 dffo5 7093 isoini2 7331 tfindsg 7854 el2mpocsbcl 8082 xpord3inddlem 8151 iiner 8801 xpf1o 9151 dffi3 9441 brwdom3 9594 xpwdomg 9597 ttrclss 9732 bndrank 9853 cfub 10261 cff1 10270 cfflb 10271 cfslb2n 10280 cofsmo 10281 cfcoflem 10284 pwcfsdom 10595 fpwwe2lem12 10654 inawinalem 10701 grupr 10809 fsequb 13991 cau3lem 15371 caubnd2 15374 caubnd 15375 rlim2lt 15511 rlim3 15512 climshftlem 15588 climcau 15685 caucvgb 15694 serf0 15695 modfsummods 15807 cvgcmp 15830 mreriincl 17608 acsfn1c 17672 islss4 20917 riinopn 22844 fiinbas 22888 baspartn 22890 isclo2 23024 lmcls 23238 lmcnp 23240 isnrm3 23295 1stcelcls 23397 llyss 23415 nllyss 23416 ptpjpre1 23507 txlly 23572 txnlly 23573 tx1stc 23586 xkococnlem 23595 fbunfip 23805 filssufilg 23847 cnpflf2 23936 fcfnei 23971 isucn2 24215 rescncf 24839 lebnum 24912 cfilss 25220 fgcfil 25221 iscau4 25229 cmetcaulem 25238 caussi 25247 ovolunlem1 25448 ulmclm 26346 ulmcaulem 26353 ulmcau 26354 ulmss 26356 rlimcnp 26925 cxploglim 26938 2sqreunnlem2 27416 pntlemp 27571 nosupno 27665 nosupres 27669 noinfno 27680 noinfres 27684 sssslt2 27758 madebdayim 27843 madebdaylemold 27853 axcontlem4 28892 ewlkle 29531 uspgr2wlkeq 29572 umgrwlknloop 29575 wlkiswwlksupgr2 29805 3cyclfrgrrn2 30214 nmlnoubi 30723 lnon0 30725 disjpreima 32511 resspos 32892 resstos 32893 submarchi 33130 prmidl2 33402 crefss 33826 iccllysconn 35218 cvmlift2lem1 35270 dmopab3rexdif 35373 ss2mcls 35536 mclsax 35537 isinf2 37369 poimirlem25 37615 poimirlem27 37617 upixp 37699 caushft 37731 sstotbnd3 37746 totbndss 37747 unichnidl 38001 ispridl2 38008 elrfirn2 42666 mzpsubst 42718 eluzrabdioph 42776 neik0pk1imk0 44018 mnuop3d 44243 ismnushort 44273 pwclaxpow 44957 limsupub 45681 limsupre3lem 45709 climuzlem 45720 xlimbr 45804 fourierdlem103 46186 fourierdlem104 46187 qndenserrnbllem 46271 2reuimp 47092 ralralimp 47255 |
| Copyright terms: Public domain | W3C validator |