| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdv | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1810). (Contributed by NM, 8-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | ralimdva 3145 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: r19.21v 3158 ralimdvv 3184 ss2ralv 4014 poss 5541 sess1 5596 sess2 5597 riinint 5924 iinpreima 7023 dffo4 7057 dffo5 7058 isoini2 7296 tfindsg 7817 el2mpocsbcl 8041 xpord3inddlem 8110 iiner 8739 xpf1o 9080 dffi3 9358 brwdom3 9511 xpwdomg 9514 ttrclss 9649 bndrank 9770 cfub 10178 cff1 10187 cfflb 10188 cfslb2n 10197 cofsmo 10198 cfcoflem 10201 pwcfsdom 10512 fpwwe2lem12 10571 inawinalem 10618 grupr 10726 fsequb 13916 cau3lem 15297 caubnd2 15300 caubnd 15301 rlim2lt 15439 rlim3 15440 climshftlem 15516 climcau 15613 caucvgb 15622 serf0 15623 modfsummods 15735 cvgcmp 15758 mreriincl 17535 acsfn1c 17603 resspos 18370 resstos 18371 islss4 20900 riinopn 22828 fiinbas 22872 baspartn 22874 isclo2 23008 lmcls 23222 lmcnp 23224 isnrm3 23279 1stcelcls 23381 llyss 23399 nllyss 23400 ptpjpre1 23491 txlly 23556 txnlly 23557 tx1stc 23570 xkococnlem 23579 fbunfip 23789 filssufilg 23831 cnpflf2 23920 fcfnei 23955 isucn2 24199 rescncf 24823 lebnum 24896 cfilss 25203 fgcfil 25204 iscau4 25212 cmetcaulem 25221 caussi 25230 ovolunlem1 25431 ulmclm 26329 ulmcaulem 26336 ulmcau 26337 ulmss 26339 rlimcnp 26908 cxploglim 26921 2sqreunnlem2 27399 pntlemp 27554 nosupno 27648 nosupres 27652 noinfno 27663 noinfres 27667 sssslt2 27742 madebdayim 27837 madebdaylemold 27847 axcontlem4 28947 ewlkle 29586 uspgr2wlkeq 29626 umgrwlknloop 29629 wlkiswwlksupgr2 29857 3cyclfrgrrn2 30266 nmlnoubi 30775 lnon0 30777 disjpreima 32563 submarchi 33155 prmidl2 33405 crefss 33832 iccllysconn 35230 cvmlift2lem1 35282 dmopab3rexdif 35385 ss2mcls 35548 mclsax 35549 isinf2 37386 poimirlem25 37632 poimirlem27 37634 upixp 37716 caushft 37748 sstotbnd3 37763 totbndss 37764 unichnidl 38018 ispridl2 38025 elrfirn2 42677 mzpsubst 42729 eluzrabdioph 42787 neik0pk1imk0 44029 mnuop3d 44253 ismnushort 44283 pwclaxpow 44967 limsupub 45695 limsupre3lem 45723 climuzlem 45734 xlimbr 45818 fourierdlem103 46200 fourierdlem104 46201 qndenserrnbllem 46285 2reuimp 47109 ralralimp 47272 |
| Copyright terms: Public domain | W3C validator |