![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimdv | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1806). (Contributed by NM, 8-Oct-2003.) |
Ref | Expression |
---|---|
ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
3 | 2 | ralimdva 3164 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3059 |
This theorem is referenced by: r19.21v 3177 ss2ralv 4065 poss 5598 sess1 5653 sess2 5654 riinint 5984 iinpreima 7088 dffo4 7122 dffo5 7123 isoini2 7358 tfindsg 7881 el2mpocsbcl 8108 xpord3inddlem 8177 iiner 8827 xpf1o 9177 dffi3 9468 brwdom3 9619 xpwdomg 9622 ttrclss 9757 bndrank 9878 cfub 10286 cff1 10295 cfflb 10296 cfslb2n 10305 cofsmo 10306 cfcoflem 10309 pwcfsdom 10620 fpwwe2lem12 10679 inawinalem 10726 grupr 10834 fsequb 14012 cau3lem 15389 caubnd2 15392 caubnd 15393 rlim2lt 15529 rlim3 15530 climshftlem 15606 climcau 15703 caucvgb 15712 serf0 15713 modfsummods 15825 cvgcmp 15848 mreriincl 17642 acsfn1c 17706 islss4 20977 riinopn 22929 fiinbas 22974 baspartn 22976 isclo2 23111 lmcls 23325 lmcnp 23327 isnrm3 23382 1stcelcls 23484 llyss 23502 nllyss 23503 ptpjpre1 23594 txlly 23659 txnlly 23660 tx1stc 23673 xkococnlem 23682 fbunfip 23892 filssufilg 23934 cnpflf2 24023 fcfnei 24058 isucn2 24303 rescncf 24936 lebnum 25009 cfilss 25317 fgcfil 25318 iscau4 25326 cmetcaulem 25335 caussi 25344 ovolunlem1 25545 ulmclm 26444 ulmcaulem 26451 ulmcau 26452 ulmss 26454 rlimcnp 27022 cxploglim 27035 2sqreunnlem2 27513 pntlemp 27668 nosupno 27762 nosupres 27766 noinfno 27777 noinfres 27781 sssslt2 27855 madebdayim 27940 madebdaylemold 27950 axcontlem4 28996 ewlkle 29637 uspgr2wlkeq 29678 umgrwlknloop 29681 wlkiswwlksupgr2 29906 3cyclfrgrrn2 30315 nmlnoubi 30824 lnon0 30826 disjpreima 32603 resspos 32940 resstos 32941 submarchi 33175 prmidl2 33448 crefss 33809 iccllysconn 35234 cvmlift2lem1 35286 dmopab3rexdif 35389 ss2mcls 35552 mclsax 35553 isinf2 37387 poimirlem25 37631 poimirlem27 37633 upixp 37715 caushft 37747 sstotbnd3 37762 totbndss 37763 unichnidl 38017 ispridl2 38024 elrfirn2 42683 mzpsubst 42735 eluzrabdioph 42793 neik0pk1imk0 44036 mnuop3d 44266 ismnushort 44296 limsupub 45659 limsupre3lem 45687 climuzlem 45698 xlimbr 45782 fourierdlem103 46164 fourierdlem104 46165 qndenserrnbllem 46249 2reuimp 47064 ralralimp 47227 |
Copyright terms: Public domain | W3C validator |