![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimdv | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1805). (Contributed by NM, 8-Oct-2003.) |
Ref | Expression |
---|---|
ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
3 | 2 | ralimdva 3163 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ∀wral 3057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3058 |
This theorem is referenced by: r19.21v 3175 ss2ralv 4048 poss 5586 sess1 5640 sess2 5641 riinint 5965 iinpreima 7072 dffo4 7107 dffo5 7108 isoini2 7341 tfindsg 7859 el2mpocsbcl 8084 xpord3inddlem 8153 iiner 8801 xpf1o 9157 dffi3 9448 brwdom3 9599 xpwdomg 9602 ttrclss 9737 bndrank 9858 cfub 10266 cff1 10275 cfflb 10276 cfslb2n 10285 cofsmo 10286 cfcoflem 10289 pwcfsdom 10600 fpwwe2lem12 10659 inawinalem 10706 grupr 10814 fsequb 13966 cau3lem 15327 caubnd2 15330 caubnd 15331 rlim2lt 15467 rlim3 15468 climshftlem 15544 climcau 15643 caucvgb 15652 serf0 15653 modfsummods 15765 cvgcmp 15788 mreriincl 17571 acsfn1c 17635 islss4 20839 riinopn 22803 fiinbas 22848 baspartn 22850 isclo2 22985 lmcls 23199 lmcnp 23201 isnrm3 23256 1stcelcls 23358 llyss 23376 nllyss 23377 ptpjpre1 23468 txlly 23533 txnlly 23534 tx1stc 23547 xkococnlem 23556 fbunfip 23766 filssufilg 23808 cnpflf2 23897 fcfnei 23932 isucn2 24177 rescncf 24810 lebnum 24883 cfilss 25191 fgcfil 25192 iscau4 25200 cmetcaulem 25209 caussi 25218 ovolunlem1 25419 ulmclm 26316 ulmcaulem 26323 ulmcau 26324 ulmss 26326 rlimcnp 26890 cxploglim 26903 2sqreunnlem2 27381 pntlemp 27536 nosupno 27629 nosupres 27633 noinfno 27644 noinfres 27648 sssslt2 27722 madebdayim 27807 madebdaylemold 27817 axcontlem4 28771 ewlkle 29412 uspgr2wlkeq 29453 umgrwlknloop 29456 wlkiswwlksupgr2 29681 3cyclfrgrrn2 30090 nmlnoubi 30599 lnon0 30601 disjpreima 32367 resspos 32687 resstos 32688 submarchi 32888 prmidl2 33151 crefss 33444 iccllysconn 34854 cvmlift2lem1 34906 dmopab3rexdif 35009 ss2mcls 35172 mclsax 35173 isinf2 36878 poimirlem25 37112 poimirlem27 37114 upixp 37196 caushft 37228 sstotbnd3 37243 totbndss 37244 unichnidl 37498 ispridl2 37505 elrfirn2 42110 mzpsubst 42162 eluzrabdioph 42220 neik0pk1imk0 43471 mnuop3d 43702 ismnushort 43732 limsupub 45086 limsupre3lem 45114 climuzlem 45125 xlimbr 45209 fourierdlem103 45591 fourierdlem104 45592 qndenserrnbllem 45676 2reuimp 46489 ralralimp 46652 |
Copyright terms: Public domain | W3C validator |