Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralimdv | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1814). (Contributed by NM, 8-Oct-2003.) |
Ref | Expression |
---|---|
ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
3 | 2 | ralimdva 3102 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3068 |
This theorem is referenced by: ss2ralv 3985 poss 5496 sess1 5548 sess2 5549 riinint 5866 iinpreima 6928 dffo4 6961 dffo5 6962 isoini2 7190 tfindsg 7682 el2mpocsbcl 7896 iiner 8536 xpf1o 8875 dffi3 9120 brwdom3 9271 xpwdomg 9274 bndrank 9530 cfub 9936 cff1 9945 cfflb 9946 cfslb2n 9955 cofsmo 9956 cfcoflem 9959 pwcfsdom 10270 fpwwe2lem12 10329 inawinalem 10376 grupr 10484 fsequb 13623 cau3lem 14994 caubnd2 14997 caubnd 14998 rlim2lt 15134 rlim3 15135 climshftlem 15211 climcau 15310 caucvgb 15319 serf0 15320 modfsummods 15433 cvgcmp 15456 mreriincl 17224 acsfn1c 17288 islss4 20139 riinopn 21965 fiinbas 22010 baspartn 22012 isclo2 22147 lmcls 22361 lmcnp 22363 isnrm3 22418 1stcelcls 22520 llyss 22538 nllyss 22539 ptpjpre1 22630 txlly 22695 txnlly 22696 tx1stc 22709 xkococnlem 22718 fbunfip 22928 filssufilg 22970 cnpflf2 23059 fcfnei 23094 isucn2 23339 rescncf 23966 lebnum 24033 cfilss 24339 fgcfil 24340 iscau4 24348 cmetcaulem 24357 caussi 24366 ovolunlem1 24566 ulmclm 25451 ulmcaulem 25458 ulmcau 25459 ulmss 25461 rlimcnp 26020 cxploglim 26032 2sqreunnlem2 26508 pntlemp 26663 axcontlem4 27238 ewlkle 27875 uspgr2wlkeq 27915 umgrwlknloop 27918 wlkiswwlksupgr2 28143 3cyclfrgrrn2 28552 nmlnoubi 29059 lnon0 29061 disjpreima 30824 resspos 31146 resstos 31147 submarchi 31342 prmidl2 31518 crefss 31701 iccllysconn 33112 cvmlift2lem1 33164 dmopab3rexdif 33267 ss2mcls 33430 mclsax 33431 ttrclss 33706 nosupno 33833 nosupres 33837 noinfno 33848 noinfres 33852 sssslt2 33917 madebdayim 33997 madebdaylemold 34005 isinf2 35503 poimirlem25 35729 poimirlem27 35731 upixp 35814 caushft 35846 sstotbnd3 35861 totbndss 35862 unichnidl 36116 ispridl2 36123 elrfirn2 40434 mzpsubst 40486 eluzrabdioph 40544 neik0pk1imk0 41546 mnuop3d 41778 ismnushort 41808 limsupub 43135 limsupre3lem 43163 climuzlem 43174 xlimbr 43258 fourierdlem103 43640 fourierdlem104 43641 qndenserrnbllem 43725 2reuimp 44494 ralralimp 44657 |
Copyright terms: Public domain | W3C validator |