| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdv | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1809). (Contributed by NM, 8-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | ralimdva 3154 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3051 |
| This theorem is referenced by: r19.21v 3167 ss2ralv 4034 poss 5574 sess1 5630 sess2 5631 riinint 5962 iinpreima 7069 dffo4 7103 dffo5 7104 isoini2 7341 tfindsg 7864 el2mpocsbcl 8092 xpord3inddlem 8161 iiner 8811 xpf1o 9161 dffi3 9453 brwdom3 9604 xpwdomg 9607 ttrclss 9742 bndrank 9863 cfub 10271 cff1 10280 cfflb 10281 cfslb2n 10290 cofsmo 10291 cfcoflem 10294 pwcfsdom 10605 fpwwe2lem12 10664 inawinalem 10711 grupr 10819 fsequb 13998 cau3lem 15376 caubnd2 15379 caubnd 15380 rlim2lt 15516 rlim3 15517 climshftlem 15593 climcau 15690 caucvgb 15699 serf0 15700 modfsummods 15812 cvgcmp 15835 mreriincl 17613 acsfn1c 17677 islss4 20929 riinopn 22863 fiinbas 22907 baspartn 22909 isclo2 23043 lmcls 23257 lmcnp 23259 isnrm3 23314 1stcelcls 23416 llyss 23434 nllyss 23435 ptpjpre1 23526 txlly 23591 txnlly 23592 tx1stc 23605 xkococnlem 23614 fbunfip 23824 filssufilg 23866 cnpflf2 23955 fcfnei 23990 isucn2 24234 rescncf 24860 lebnum 24933 cfilss 25241 fgcfil 25242 iscau4 25250 cmetcaulem 25259 caussi 25268 ovolunlem1 25469 ulmclm 26367 ulmcaulem 26374 ulmcau 26375 ulmss 26377 rlimcnp 26945 cxploglim 26958 2sqreunnlem2 27436 pntlemp 27591 nosupno 27685 nosupres 27689 noinfno 27700 noinfres 27704 sssslt2 27778 madebdayim 27863 madebdaylemold 27873 axcontlem4 28913 ewlkle 29552 uspgr2wlkeq 29593 umgrwlknloop 29596 wlkiswwlksupgr2 29826 3cyclfrgrrn2 30235 nmlnoubi 30744 lnon0 30746 disjpreima 32533 resspos 32900 resstos 32901 submarchi 33137 prmidl2 33409 crefss 33823 iccllysconn 35230 cvmlift2lem1 35282 dmopab3rexdif 35385 ss2mcls 35548 mclsax 35549 isinf2 37381 poimirlem25 37627 poimirlem27 37629 upixp 37711 caushft 37743 sstotbnd3 37758 totbndss 37759 unichnidl 38013 ispridl2 38020 elrfirn2 42685 mzpsubst 42737 eluzrabdioph 42795 neik0pk1imk0 44037 mnuop3d 44262 ismnushort 44292 pwclaxpow 44973 limsupub 45691 limsupre3lem 45719 climuzlem 45730 xlimbr 45814 fourierdlem103 46196 fourierdlem104 46197 qndenserrnbllem 46281 2reuimp 47100 ralralimp 47263 |
| Copyright terms: Public domain | W3C validator |