Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relpf Structured version   Visualization version   GIF version

Theorem relpf 44960
Description: A relation-preserving function is a function. (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
relpf (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴𝐵)

Proof of Theorem relpf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-relp 44953 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
21simplbi 497 1 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 3061   class class class wbr 5151  wf 6565  cfv 6569   RelPres wrelp 44952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-relp 44953
This theorem is referenced by:  relpmin  44962  relpfrlem  44963  relpfr  44964
  Copyright terms: Public domain W3C validator