Detailed syntax breakdown of Definition df-relp
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | | cB |
. . 3
class 𝐵 |
| 3 | | cR |
. . 3
class 𝑅 |
| 4 | | cS |
. . 3
class 𝑆 |
| 5 | | cH |
. . 3
class 𝐻 |
| 6 | 1, 2, 3, 4, 5 | wrelp 44920 |
. 2
wff 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) |
| 7 | 1, 2, 5 | wf 6537 |
. . 3
wff 𝐻:𝐴⟶𝐵 |
| 8 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 9 | 8 | cv 1538 |
. . . . . . 7
class 𝑥 |
| 10 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 11 | 10 | cv 1538 |
. . . . . . 7
class 𝑦 |
| 12 | 9, 11, 3 | wbr 5123 |
. . . . . 6
wff 𝑥𝑅𝑦 |
| 13 | 9, 5 | cfv 6541 |
. . . . . . 7
class (𝐻‘𝑥) |
| 14 | 11, 5 | cfv 6541 |
. . . . . . 7
class (𝐻‘𝑦) |
| 15 | 13, 14, 4 | wbr 5123 |
. . . . . 6
wff (𝐻‘𝑥)𝑆(𝐻‘𝑦) |
| 16 | 12, 15 | wi 4 |
. . . . 5
wff (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 17 | 16, 10, 1 | wral 3050 |
. . . 4
wff
∀𝑦 ∈
𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 18 | 17, 8, 1 | wral 3050 |
. . 3
wff
∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) |
| 19 | 7, 18 | wa 395 |
. 2
wff (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
| 20 | 6, 19 | wb 206 |
1
wff (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |