Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-relp Structured version   Visualization version   GIF version

Definition df-relp 44953
Description: Define the relation-preserving predicate. This is a viable notion of "homomorphism" corresponding to df-isom 6578. (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
df-relp (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝐻,𝑦

Detailed syntax breakdown of Definition df-relp
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cR . . 3 class 𝑅
4 cS . . 3 class 𝑆
5 cH . . 3 class 𝐻
61, 2, 3, 4, 5wrelp 44952 . 2 wff 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)
71, 2, 5wf 6565 . . 3 wff 𝐻:𝐴𝐵
8 vx . . . . . . . 8 setvar 𝑥
98cv 1538 . . . . . . 7 class 𝑥
10 vy . . . . . . . 8 setvar 𝑦
1110cv 1538 . . . . . . 7 class 𝑦
129, 11, 3wbr 5151 . . . . . 6 wff 𝑥𝑅𝑦
139, 5cfv 6569 . . . . . . 7 class (𝐻𝑥)
1411, 5cfv 6569 . . . . . . 7 class (𝐻𝑦)
1513, 14, 4wbr 5151 . . . . . 6 wff (𝐻𝑥)𝑆(𝐻𝑦)
1612, 15wi 4 . . . . 5 wff (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))
1716, 10, 1wral 3061 . . . 4 wff 𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))
1817, 8, 1wral 3061 . . 3 wff 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))
197, 18wa 395 . 2 wff (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))
206, 19wb 206 1 wff (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
Colors of variables: wff setvar class
This definition is referenced by:  relpeq1  44954  relpeq2  44955  relpeq3  44956  relpeq4  44957  relpeq5  44958  nfrelp  44959  relpf  44960  relprel  44961  rankrelp  44966
  Copyright terms: Public domain W3C validator