| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relpfr | Structured version Visualization version GIF version | ||
| Description: If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr 7279 for a bidirectional statement. A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| relpfr | ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)) | |
| 2 | relpf 44924 | . . 3 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴⟶𝐵) | |
| 3 | ffun 6655 | . . 3 ⊢ (𝐻:𝐴⟶𝐵 → Fun 𝐻) | |
| 4 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 5 | 4 | funimaex 6570 | . . 3 ⊢ (Fun 𝐻 → (𝐻 “ 𝑥) ∈ V) |
| 6 | 2, 3, 5 | 3syl 18 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝐻 “ 𝑥) ∈ V) |
| 7 | 1, 6 | relpfrlem 44927 | 1 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 Fr wfr 5569 “ cima 5622 Fun wfun 6476 ⟶wf 6478 RelPres wrelp 44916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-fr 5572 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-relp 44917 |
| This theorem is referenced by: wffr 44935 |
| Copyright terms: Public domain | W3C validator |