| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relpfr | Structured version Visualization version GIF version | ||
| Description: If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr 7319 for a bidirectional statement. A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| relpfr | ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)) | |
| 2 | relpf 44933 | . . 3 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴⟶𝐵) | |
| 3 | ffun 6693 | . . 3 ⊢ (𝐻:𝐴⟶𝐵 → Fun 𝐻) | |
| 4 | vex 3454 | . . . 4 ⊢ 𝑥 ∈ V | |
| 5 | 4 | funimaex 6607 | . . 3 ⊢ (Fun 𝐻 → (𝐻 “ 𝑥) ∈ V) |
| 6 | 2, 3, 5 | 3syl 18 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝐻 “ 𝑥) ∈ V) |
| 7 | 1, 6 | relpfrlem 44936 | 1 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 Fr wfr 5590 “ cima 5643 Fun wfun 6507 ⟶wf 6509 RelPres wrelp 44925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-fr 5593 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-relp 44926 |
| This theorem is referenced by: wffr 44944 |
| Copyright terms: Public domain | W3C validator |