Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relpfr Structured version   Visualization version   GIF version

Theorem relpfr 44932
Description: If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr 7344 for a bidirectional statement. A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
relpfr (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))

Proof of Theorem relpfr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵))
2 relpf 44928 . . 3 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴𝐵)
3 ffun 6719 . . 3 (𝐻:𝐴𝐵 → Fun 𝐻)
4 vex 3467 . . . 4 𝑥 ∈ V
54funimaex 6635 . . 3 (Fun 𝐻 → (𝐻𝑥) ∈ V)
62, 3, 53syl 18 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝐻𝑥) ∈ V)
71, 6relpfrlem 44931 1 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3463   Fr wfr 5614  cima 5668  Fun wfun 6535  wf 6537   RelPres wrelp 44920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-fr 5617  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-relp 44921
This theorem is referenced by:  wffr  44935
  Copyright terms: Public domain W3C validator