Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relpfr Structured version   Visualization version   GIF version

Theorem relpfr 44937
Description: If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr 7319 for a bidirectional statement. A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
relpfr (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))

Proof of Theorem relpfr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵))
2 relpf 44933 . . 3 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴𝐵)
3 ffun 6693 . . 3 (𝐻:𝐴𝐵 → Fun 𝐻)
4 vex 3454 . . . 4 𝑥 ∈ V
54funimaex 6607 . . 3 (Fun 𝐻 → (𝐻𝑥) ∈ V)
62, 3, 53syl 18 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝐻𝑥) ∈ V)
71, 6relpfrlem 44936 1 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3450   Fr wfr 5590  cima 5643  Fun wfun 6507  wf 6509   RelPres wrelp 44925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-fr 5593  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-relp 44926
This theorem is referenced by:  wffr  44944
  Copyright terms: Public domain W3C validator