![]() |
Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relpfr | Structured version Visualization version GIF version |
Description: If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr 7369 for a bidirectional statement. A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed by Eric Schmidt, 11-Oct-2025.) |
Ref | Expression |
---|---|
relpfr | ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)) | |
2 | relpf 44960 | . . 3 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴⟶𝐵) | |
3 | ffun 6747 | . . 3 ⊢ (𝐻:𝐴⟶𝐵 → Fun 𝐻) | |
4 | vex 3485 | . . . 4 ⊢ 𝑥 ∈ V | |
5 | 4 | funimaex 6663 | . . 3 ⊢ (Fun 𝐻 → (𝐻 “ 𝑥) ∈ V) |
6 | 2, 3, 5 | 3syl 18 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝐻 “ 𝑥) ∈ V) |
7 | 1, 6 | relpfrlem 44963 | 1 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3481 Fr wfr 5642 “ cima 5696 Fun wfun 6563 ⟶wf 6565 RelPres wrelp 44952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-fr 5645 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-relp 44953 |
This theorem is referenced by: wffr 44967 |
Copyright terms: Public domain | W3C validator |