| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relpfr | Structured version Visualization version GIF version | ||
| Description: If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr 7344 for a bidirectional statement. A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| relpfr | ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵)) | |
| 2 | relpf 44928 | . . 3 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴⟶𝐵) | |
| 3 | ffun 6719 | . . 3 ⊢ (𝐻:𝐴⟶𝐵 → Fun 𝐻) | |
| 4 | vex 3467 | . . . 4 ⊢ 𝑥 ∈ V | |
| 5 | 4 | funimaex 6635 | . . 3 ⊢ (Fun 𝐻 → (𝐻 “ 𝑥) ∈ V) |
| 6 | 2, 3, 5 | 3syl 18 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝐻 “ 𝑥) ∈ V) |
| 7 | 1, 6 | relpfrlem 44931 | 1 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3463 Fr wfr 5614 “ cima 5668 Fun wfun 6535 ⟶wf 6537 RelPres wrelp 44920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-fr 5617 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-relp 44921 |
| This theorem is referenced by: wffr 44935 |
| Copyright terms: Public domain | W3C validator |