Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relpfr Structured version   Visualization version   GIF version

Theorem relpfr 44928
Description: If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr 7279 for a bidirectional statement. A more general version of Lemma I.9.9 of [Kunen2] p. 47. (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
relpfr (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))

Proof of Theorem relpfr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵))
2 relpf 44924 . . 3 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴𝐵)
3 ffun 6655 . . 3 (𝐻:𝐴𝐵 → Fun 𝐻)
4 vex 3440 . . . 4 𝑥 ∈ V
54funimaex 6570 . . 3 (Fun 𝐻 → (𝐻𝑥) ∈ V)
62, 3, 53syl 18 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝐻𝑥) ∈ V)
71, 6relpfrlem 44927 1 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3436   Fr wfr 5569  cima 5622  Fun wfun 6476  wf 6478   RelPres wrelp 44916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-fr 5572  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-relp 44917
This theorem is referenced by:  wffr  44935
  Copyright terms: Public domain W3C validator