Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relpmin Structured version   Visualization version   GIF version

Theorem relpmin 44942
Description: A preimage of a minimal element under a relation-preserving function is minimal. Essentially one half of isomin 7312. (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
relpmin ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅ → (𝐶 ∩ (𝑅 “ {𝐷})) = ∅))

Proof of Theorem relpmin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 4315 . . 3 (¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})))
2 relpf 44940 . . . . . . . . . 10 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴𝐵)
32ffnd 6689 . . . . . . . . 9 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 Fn 𝐴)
4 fnfvima 7207 . . . . . . . . . . 11 ((𝐻 Fn 𝐴𝐶𝐴𝑥𝐶) → (𝐻𝑥) ∈ (𝐻𝐶))
543expia 1121 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝐶𝐴) → (𝑥𝐶 → (𝐻𝑥) ∈ (𝐻𝐶)))
65adantrr 717 . . . . . . . . 9 ((𝐻 Fn 𝐴 ∧ (𝐶𝐴𝐷𝐴)) → (𝑥𝐶 → (𝐻𝑥) ∈ (𝐻𝐶)))
73, 6sylan 580 . . . . . . . 8 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥𝐶 → (𝐻𝑥) ∈ (𝐻𝐶)))
87adantrd 491 . . . . . . 7 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})) → (𝐻𝑥) ∈ (𝐻𝐶)))
9 ssel 3940 . . . . . . . . . . 11 (𝐶𝐴 → (𝑥𝐶𝑥𝐴))
10 vex 3451 . . . . . . . . . . . . . . 15 𝑥 ∈ V
1110eliniseg 6065 . . . . . . . . . . . . . 14 (𝐷𝐴 → (𝑥 ∈ (𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷))
1211ad2antll 729 . . . . . . . . . . . . 13 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥 ∈ (𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷))
13 relprel 44941 . . . . . . . . . . . . . 14 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝑅𝐷 → (𝐻𝑥)𝑆(𝐻𝐷)))
14 fvex 6871 . . . . . . . . . . . . . . 15 (𝐻𝐷) ∈ V
15 fvex 6871 . . . . . . . . . . . . . . . 16 (𝐻𝑥) ∈ V
1615eliniseg 6065 . . . . . . . . . . . . . . 15 ((𝐻𝐷) ∈ V → ((𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}) ↔ (𝐻𝑥)𝑆(𝐻𝐷)))
1714, 16ax-mp 5 . . . . . . . . . . . . . 14 ((𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}) ↔ (𝐻𝑥)𝑆(𝐻𝐷))
1813, 17imbitrrdi 252 . . . . . . . . . . . . 13 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝑅𝐷 → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))
1912, 18sylbid 240 . . . . . . . . . . . 12 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))
2019exp32 420 . . . . . . . . . . 11 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑥𝐴 → (𝐷𝐴 → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))))
219, 20syl9r 78 . . . . . . . . . 10 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝐶𝐴 → (𝑥𝐶 → (𝐷𝐴 → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}))))))
2221com34 91 . . . . . . . . 9 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝐶𝐴 → (𝐷𝐴 → (𝑥𝐶 → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}))))))
2322imp32 418 . . . . . . . 8 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥𝐶 → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}))))
2423impd 410 . . . . . . 7 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))
258, 24jcad 512 . . . . . 6 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})) → ((𝐻𝑥) ∈ (𝐻𝐶) ∧ (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}))))
26 elin 3930 . . . . . 6 (𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) ↔ (𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})))
27 elin 3930 . . . . . 6 ((𝐻𝑥) ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) ↔ ((𝐻𝑥) ∈ (𝐻𝐶) ∧ (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))
2825, 26, 273imtr4g 296 . . . . 5 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) → (𝐻𝑥) ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)}))))
29 n0i 4303 . . . . 5 ((𝐻𝑥) ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) → ¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅)
3028, 29syl6 35 . . . 4 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) → ¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
3130exlimdv 1933 . . 3 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (∃𝑥 𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) → ¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
321, 31biimtrid 242 . 2 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅ → ¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
3332con4d 115 1 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅ → (𝐶 ∩ (𝑅 “ {𝐷})) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  cin 3913  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  ccnv 5637  cima 5641   Fn wfn 6506  cfv 6511   RelPres wrelp 44932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-relp 44933
This theorem is referenced by:  relpfrlem  44943
  Copyright terms: Public domain W3C validator