Step | Hyp | Ref
| Expression |
1 | | neq0 4361 |
. . 3
⊢ (¬
(𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷}))) |
2 | | relpf 44960 |
. . . . . . . . . 10
⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴⟶𝐵) |
3 | 2 | ffnd 6745 |
. . . . . . . . 9
⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 Fn 𝐴) |
4 | | fnfvima 7260 |
. . . . . . . . . . 11
⊢ ((𝐻 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶)) |
5 | 4 | 3expia 1122 |
. . . . . . . . . 10
⊢ ((𝐻 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑥 ∈ 𝐶 → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶))) |
6 | 5 | adantrr 717 |
. . . . . . . . 9
⊢ ((𝐻 Fn 𝐴 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ 𝐶 → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶))) |
7 | 3, 6 | sylan 580 |
. . . . . . . 8
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ 𝐶 → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶))) |
8 | 7 | adantrd 491 |
. . . . . . 7
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷})) → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶))) |
9 | | ssel 3992 |
. . . . . . . . . . 11
⊢ (𝐶 ⊆ 𝐴 → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴)) |
10 | | vex 3485 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
11 | 10 | eliniseg 6120 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ 𝐴 → (𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷)) |
12 | 11 | ad2antll 729 |
. . . . . . . . . . . . 13
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷)) |
13 | | relprel 44961 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝑅𝐷 → (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
14 | | fvex 6927 |
. . . . . . . . . . . . . . 15
⊢ (𝐻‘𝐷) ∈ V |
15 | | fvex 6927 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻‘𝑥) ∈ V |
16 | 15 | eliniseg 6120 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻‘𝐷) ∈ V → ((𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
17 | 14, 16 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷)) |
18 | 13, 17 | imbitrrdi 252 |
. . . . . . . . . . . . 13
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝑅𝐷 → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
19 | 12, 18 | sylbid 240 |
. . . . . . . . . . . 12
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
20 | 19 | exp32 420 |
. . . . . . . . . . 11
⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝑥 ∈ 𝐴 → (𝐷 ∈ 𝐴 → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))))) |
21 | 9, 20 | syl9r 78 |
. . . . . . . . . 10
⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝐶 ⊆ 𝐴 → (𝑥 ∈ 𝐶 → (𝐷 ∈ 𝐴 → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)})))))) |
22 | 21 | com34 91 |
. . . . . . . . 9
⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → (𝐶 ⊆ 𝐴 → (𝐷 ∈ 𝐴 → (𝑥 ∈ 𝐶 → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)})))))) |
23 | 22 | imp32 418 |
. . . . . . . 8
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ 𝐶 → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)})))) |
24 | 23 | impd 410 |
. . . . . . 7
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷})) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
25 | 8, 24 | jcad 512 |
. . . . . 6
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷})) → ((𝐻‘𝑥) ∈ (𝐻 “ 𝐶) ∧ (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)})))) |
26 | | elin 3982 |
. . . . . 6
⊢ (𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
27 | | elin 3982 |
. . . . . 6
⊢ ((𝐻‘𝑥) ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ((𝐻‘𝑥) ∈ (𝐻 “ 𝐶) ∧ (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
28 | 25, 26, 27 | 3imtr4g 296 |
. . . . 5
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) → (𝐻‘𝑥) ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})))) |
29 | | n0i 4349 |
. . . . 5
⊢ ((𝐻‘𝑥) ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) → ¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅) |
30 | 28, 29 | syl6 35 |
. . . 4
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) → ¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) |
31 | 30 | exlimdv 1933 |
. . 3
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∃𝑥 𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) → ¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) |
32 | 1, 31 | biimtrid 242 |
. 2
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ → ¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) |
33 | 32 | con4d 115 |
1
⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅ → (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅)) |