Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relprel Structured version   Visualization version   GIF version

Theorem relprel 44913
Description: A relation-preserving function preserves the relation. (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
relprel ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 → (𝐻𝐶)𝑆(𝐻𝐷)))

Proof of Theorem relprel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-relp 44905 . . 3 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))))
21simprbi 496 . 2 (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))
3 breq1 5118 . . . 4 (𝑥 = 𝐶 → (𝑥𝑅𝑦𝐶𝑅𝑦))
4 fveq2 6865 . . . . 5 (𝑥 = 𝐶 → (𝐻𝑥) = (𝐻𝐶))
54breq1d 5125 . . . 4 (𝑥 = 𝐶 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝐶)𝑆(𝐻𝑦)))
63, 5imbi12d 344 . . 3 (𝑥 = 𝐶 → ((𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝐶𝑅𝑦 → (𝐻𝐶)𝑆(𝐻𝑦))))
7 breq2 5119 . . . 4 (𝑦 = 𝐷 → (𝐶𝑅𝑦𝐶𝑅𝐷))
8 fveq2 6865 . . . . 5 (𝑦 = 𝐷 → (𝐻𝑦) = (𝐻𝐷))
98breq2d 5127 . . . 4 (𝑦 = 𝐷 → ((𝐻𝐶)𝑆(𝐻𝑦) ↔ (𝐻𝐶)𝑆(𝐻𝐷)))
107, 9imbi12d 344 . . 3 (𝑦 = 𝐷 → ((𝐶𝑅𝑦 → (𝐻𝐶)𝑆(𝐻𝑦)) ↔ (𝐶𝑅𝐷 → (𝐻𝐶)𝑆(𝐻𝐷))))
116, 10rspc2v 3608 . 2 ((𝐶𝐴𝐷𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) → (𝐶𝑅𝐷 → (𝐻𝐶)𝑆(𝐻𝐷))))
122, 11mpan9 506 1 ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 → (𝐻𝐶)𝑆(𝐻𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3046   class class class wbr 5115  wf 6515  cfv 6519   RelPres wrelp 44904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-iota 6472  df-fv 6527  df-relp 44905
This theorem is referenced by:  relpmin  44914
  Copyright terms: Public domain W3C validator