| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relprel | Structured version Visualization version GIF version | ||
| Description: A relation-preserving function preserves the relation. (Contributed by Eric Schmidt, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| relprel | ⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 → (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-relp 45060 | . . 3 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
| 3 | breq1 5096 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝑥𝑅𝑦 ↔ 𝐶𝑅𝑦)) | |
| 4 | fveq2 6828 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐻‘𝑥) = (𝐻‘𝐶)) | |
| 5 | 4 | breq1d 5103 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝐶)𝑆(𝐻‘𝑦))) |
| 6 | 3, 5 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝐶𝑅𝑦 → (𝐻‘𝐶)𝑆(𝐻‘𝑦)))) |
| 7 | breq2 5097 | . . . 4 ⊢ (𝑦 = 𝐷 → (𝐶𝑅𝑦 ↔ 𝐶𝑅𝐷)) | |
| 8 | fveq2 6828 | . . . . 5 ⊢ (𝑦 = 𝐷 → (𝐻‘𝑦) = (𝐻‘𝐷)) | |
| 9 | 8 | breq2d 5105 | . . . 4 ⊢ (𝑦 = 𝐷 → ((𝐻‘𝐶)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
| 10 | 7, 9 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐷 → ((𝐶𝑅𝑦 → (𝐻‘𝐶)𝑆(𝐻‘𝑦)) ↔ (𝐶𝑅𝐷 → (𝐻‘𝐶)𝑆(𝐻‘𝐷)))) |
| 11 | 6, 10 | rspc2v 3584 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) → (𝐶𝑅𝐷 → (𝐻‘𝐶)𝑆(𝐻‘𝐷)))) |
| 12 | 2, 11 | mpan9 506 | 1 ⊢ ((𝐻 RelPres 𝑅, 𝑆(𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 → (𝐻‘𝐶)𝑆(𝐻‘𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 class class class wbr 5093 ⟶wf 6482 ‘cfv 6486 RelPres wrelp 45059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-relp 45060 |
| This theorem is referenced by: relpmin 45069 |
| Copyright terms: Public domain | W3C validator |